Building Surface Topography Files
Here we present a simple tutorial to build a new topography map that can be used in the Generic PCM.
Surface topography maps are netcdf files stored in your /datagcm/surface_data/ repository. Such files contain information on terrain elevations, as well as albedo and thermal inertia.
As a reminder, our database of surface topography files is available here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/
Getting topography and surface data
A few options to do that:
- use existing topographic data for solar system objects. We have already formatted the data for most solar system objects, so please ask someone in the team if your topography map is not already here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/
- use your own data files
You can also derive data files by digitalizing color maps. See below an example:
from numpy import *
import numpy as np
import matplotlib.pyplot as mpl
import math
from PIL import Image
# Here we first digitalize a png image name "rico_topography.png"
image = Image.open('rico_topography.png') # For simplicity, we work here in a 360 longitude pixels x 180 latitude pixels
pix = image.load()
image_width, image_height = image.size
topography_data=np.zeros((image_width, image_height),dtype='f')
# Here we convert the pixels into some rules for the elevation map
for i in range(0,image_width,1):
for j in range(0,image_height,1):
if(pix[i,j][0]<1. and pix[i,j][1]<1. and pix[i,j][2]<1.):
topography_data[i,j]=5.
else:
topography_data[i,j]=0.
# Here we write the topography map into an ascii file
name_file='rico_topography.txt'
with open(name_file, 'w') as f1:
for j in range(0,image_height,1):
for i in range(0,image_width-1,1):
print("{:12.5e}".format(topography_data[i,j]),file=f1,end=' ')
print("{:12.5e}".format(topography_data[image_width-1,j]),file=f1,end='\n')
Convert the data into a netcdf surface topography map
We have developed Python and fortran routines to easily convert surface data files (elevation, albedo, thermal inertia) into GCM-compatible surface topography files.
Please find below examples:
from numpy import *
import numpy as np
import matplotlib.pyplot as mpl
import math
import xarray as xr
# 1. WE GET THE SURFACE TOPOGRAPHY DATA
nc = xr.open_dataset('surface_mars.nc',decode_times=False) # can be any netcdf file (e.g. start/startfi.nc files)
# the surface_mars.nc file can be downloaded here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/
# 2. WE READ THE VARIABLES
lat=nc['latitude']
lon=nc['longitude']
albedo=nc['albedo']
thermal_inertia=nc['thermal']
elevation=nc['zMOL']
# BELOW THE VARIABLES WE WANT TO UPDATE
new_elevation = np.empty((len(lat),len(lon)))
new_thermal_inertia = np.empty((len(lat),len(lon)))
new_albedo = np.empty((len(lat),len(lon)))
# LOOP TO MODIFY THE VARIABLES
for i in range(0,len(lat),1):
for j in range(0,len(lon),1):
new_elevation[i,j]=max(elevation[i,j],-3.9) # here you put whatever you want ; in this example, we take the (MOLA) topography of present-day Mars and modify it to fill the topographic depressions with an ocean at an altitude of -3.9km
new_albedo[i,j]=albedo[i,j] # here you put whatever you want
new_thermal_inertia[i,j]=thermal_inertia[i,j] # here you put whatever you want
# SANITY CHECK PLOTS
fig1 = mpl.figure(1)
mpl.contourf(lon,lat,elevation)
mpl.xlabel('longitude (deg)')
mpl.ylabel('latitude (deg)')
mpl.show()
fig2 = mpl.figure(2)
mpl.contourf(lon,lat,new_elevation)
mpl.xlabel('longitude (deg)')
mpl.ylabel('latitude (deg)')
mpl.show()
# CREATE THE NEW NETCDF TOPOGRAPHY FILE
nc['albedo'].values = new_albedo
nc['zMOL'].values = new_elevation
nc['thermal'].values = new_thermal_inertia
nc.to_netcdf('new_topography.nc')
Using a new topography in the model
Now that you have your netcdf surface topography file ready, simply follow the tutorial here: https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Advanced_Use_of_the_GCM