Difference between revisions of "Rayleigh scattering"

From Planets
Jump to: navigation, search
Line 1: Line 1:
 
== About Rayleigh scattering in LMDZ Generic ==
 
== About Rayleigh scattering in LMDZ Generic ==
  
=== Formalism ===
+
== References ==
  
==== References ====
+
=== LMDZ ===
  
 
''Hansen'' (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF equations (2.29) to (2.32)
 
''Hansen'' (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF equations (2.29) to (2.32)
 +
 +
=== exo_k ===
  
 
Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol
 
Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol
Line 12: Line 14:
 
''Caldas'' (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document equation (12) & appendix D
 
''Caldas'' (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document equation (12) & appendix D
  
==== Relations between LMDZ & Exo_k formalisms ====
+
== Formalism ==
 +
 
 +
=== LMDZ formalism ===
  
 
In LMDZ, in optcv.F90 we have :
 
In LMDZ, in optcv.F90 we have :
Line 18: Line 22:
 
TRAY(K,NW)  = TAURAY(NW) * DPR(K)
 
TRAY(K,NW)  = TAURAY(NW) * DPR(K)
  
In exo_k we have :
+
=== exo_k formalism ===
  
 
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with <math> \displaystyle \sigma_{exok} </math> the cross section and dN in molecules/m2
 
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with <math> \displaystyle \sigma_{exok} </math> the cross section and dN in molecules/m2
Line 26: Line 30:
 
and then : TRAY <math> \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP</math>
 
and then : TRAY <math> \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP</math>
  
so LMDZ & exo_k formalism are linked as following :
+
=== Relations between LMDZ & Exo_k formalisms ===
 +
 
 +
LMDZ & exo_k formalism are linked as following :
  
 
<math> \displaystyle \text{TAURAY} = \frac{\sigma_{exok}}{g * m_{molecule}} </math>
 
<math> \displaystyle \text{TAURAY} = \frac{\sigma_{exok}}{g * m_{molecule}} </math>
Line 32: Line 38:
 
Be careful with units !!! (cm-1 for wavenumbers in exo_k, microns for wavelengths in LMDZ, not to forget the ''scalep'' factor in LMDZ)
 
Be careful with units !!! (cm-1 for wavenumbers in exo_k, microns for wavelengths in LMDZ, not to forget the ''scalep'' factor in LMDZ)
  
To be noticed :
+
=== To be noticed ===
  
 
TAURAY(NW) is calculated in calc_rayleigh.F90.
 
TAURAY(NW) is calculated in calc_rayleigh.F90.

Revision as of 15:15, 28 September 2022

About Rayleigh scattering in LMDZ Generic

References

LMDZ

Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF equations (2.29) to (2.32)

exo_k

Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol

Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document equation (12) & appendix D

Formalism

LMDZ formalism

In LMDZ, in optcv.F90 we have :

TRAY(K,NW) = TAURAY(NW) * DPR(K)

exo_k formalism

TRAY \( \displaystyle = \sigma_{exok} dN \) with \( \displaystyle \sigma_{exok} \) the cross section and dN in molecules/m2

which gives : TRAY \( \displaystyle = \sigma_{exok} \frac{dm}{m_{molecule}} \) with dm in kg/m2

and then : TRAY \( \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP\)

Relations between LMDZ & Exo_k formalisms

LMDZ & exo_k formalism are linked as following \[ \displaystyle \text{TAURAY} = \frac{\sigma_{exok}}{g * m_{molecule}} \]

Be careful with units !!! (cm-1 for wavenumbers in exo_k, microns for wavelengths in LMDZ, not to forget the scalep factor in LMDZ)

To be noticed

TAURAY(NW) is calculated in calc_rayleigh.F90.

It is in fact TAUVAR which calculated, and then averaged by the black body function for each channel to give TAURAY \[ \text{TAURAY(NW)} = \frac{\int_{\lambda' \in \text{channel}} \text{TAUVAR} (\lambda') B_{\lambda} \, \mathrm{d}\lambda'}{\int B_{\lambda} \, \mathrm{d}\lambda'} \]