Difference between revisions of "Rayleigh scattering"
Noe clement (talk | contribs) |
Noe clement (talk | contribs) |
||
Line 22: | Line 22: | ||
TRAY <math> \displaystyle = \tau_{RAY}(\lambda) dP</math> | TRAY <math> \displaystyle = \tau_{RAY}(\lambda) dP</math> | ||
− | + | In exo_k we have : | |
− | |||
− | |||
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with dm in kg/m2 | TRAY <math> \displaystyle = \sigma_{exok} dN </math> with dm in kg/m2 | ||
Line 37: | Line 35: | ||
+ | To be noticed : | ||
+ | |||
+ | We write <math> \displaystyle TRAY = \tau_{RAY} dP</math> | ||
+ | |||
+ | TAURAY(NW) is calculated in calc_rayleigh.F90 | ||
TAURAY(NW) : <math> \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} </math> | TAURAY(NW) : <math> \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} </math> | ||
<math> \displaystyle \tau(\lambda) </math> is called TAUVAR | <math> \displaystyle \tau(\lambda) </math> is called TAUVAR |
Revision as of 14:55, 28 September 2022
About Rayleigh scattering in LMDZ Generic
Formalism
References
Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF
Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol
Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document
Equation
in optcv.F90 :
TRAY(K,NW) = TAURAY(NW) * DPR(K)
Let's write it :
TRAY \( \displaystyle = \tau_{RAY}(\lambda) dP\)
In exo_k we have :
TRAY \( \displaystyle = \sigma_{exok} dN \) with dm in kg/m2
TRAY \( \displaystyle = \sigma_{exok} \frac{dm}{m_{molecule}} \) with dm in kg/m2
TRAY \( \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP\)
so
\( \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} \)
To be noticed :
We write \( \displaystyle TRAY = \tau_{RAY} dP\)
TAURAY(NW) is calculated in calc_rayleigh.F90
TAURAY(NW) \[ \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} \]
\( \displaystyle \tau(\lambda) \) is called TAUVAR