Difference between revisions of "Rayleigh scattering"

From Planets
Jump to: navigation, search
Line 25: Line 25:
  
 
TAURAY(NW) is calculated in calc_rayleigh.F90
 
TAURAY(NW) is calculated in calc_rayleigh.F90
 
TAURAY(NW) : <math> \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} </math>
 
 
<math> \displaystyle \tau(\lambda) </math> is called TAUVAR
 
 
For a given <math> \displaystyle \lambda </math>, we have <math> \displaystyle TAURAY(\lambda) = \tau(\lambda) dP </math>
 
 
here
 
  
 
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with dm in kg/m2
 
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with dm in kg/m2
Line 43: Line 35:
  
 
<math> \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} </math>
 
<math> \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} </math>
 +
 +
 +
 +
TAURAY(NW) : <math> \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} </math>
 +
 +
<math> \displaystyle \tau(\lambda) </math> is called TAUVAR

Revision as of 14:54, 28 September 2022

About Rayleigh scattering in LMDZ Generic

Formalism

References

Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF

Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol

Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document

Equation

in optcv.F90 :

TRAY(K,NW) = TAURAY(NW) * DPR(K)

Let's write it :

TRAY \( \displaystyle = \tau_{RAY}(\lambda) dP\)

We write \( \displaystyle TRAY = \tau_{RAY} dP\)

TAURAY(NW) is calculated in calc_rayleigh.F90

TRAY \( \displaystyle = \sigma_{exok} dN \) with dm in kg/m2

TRAY \( \displaystyle = \sigma_{exok} \frac{dm}{m_{molecule}} \) with dm in kg/m2

TRAY \( \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP\)

so

\( \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} \)


TAURAY(NW) \[ \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} \]

\( \displaystyle \tau(\lambda) \) is called TAUVAR