Difference between revisions of "Rayleigh scattering"

From Planets
Jump to: navigation, search
Line 29: Line 29:
  
 
here
 
here
 +
 +
TRAY <math> \displaystyle \frac{\sigma_{exok}}{g * m_{molecule}} dP</math>
 +
 +
so
  
 
<math> \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} </math>
 
<math> \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} </math>

Revision as of 14:48, 28 September 2022

About Rayleigh scattering in LMDZ Generic

Formalism

References

Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF

Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol

Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document

Equation

in optcv.F90 :

TRAY(K,NW) = TAURAY(NW) * DPR(K)

We write \( \displaystyle TRAY = \tau_{RAY} dP\)

TAURAY(NW) is calculated in calc_rayleigh.F90

TAURAY(NW) \[ \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} \]

\( \displaystyle \tau(\lambda) \) is called TAUVAR

For a given \( \displaystyle \lambda \), we have \( \displaystyle TAURAY(\lambda) = \tau(\lambda) dP \)

here

TRAY \( \displaystyle \frac{\sigma_{exok}}{g * m_{molecule}} dP\)

so

\( \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}}{g * m_{molecule}} \)