Difference between revisions of "Rayleigh scattering"
Noe clement (talk | contribs) |
Noe clement (talk | contribs) |
||
Line 28: | Line 28: | ||
For a given <math> \displaystyle \lambda </math>, we have <math> \displaystyle TAURAY(\lambda) = \tau(\lambda) dP</math> | For a given <math> \displaystyle \lambda </math>, we have <math> \displaystyle TAURAY(\lambda) = \tau(\lambda) dP</math> | ||
+ | here | ||
<math> \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}{g * m_{molecule}} </math> | <math> \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}{g * m_{molecule}} </math> |
Revision as of 14:45, 28 September 2022
About Rayleigh scattering in LMDZ Generic
Formalism
References
Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF
Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol
Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document
Equation
in optcv.F90 :
TRAY(K,NW) = TAURAY(NW) * DPR(K)
We write \( \displaystyle TRAY = \tau_{RAY} dP\)
TAURAY(NW) is calculated in calc_rayleigh.F90
TAURAY(NW) \[ \displaystyle \tau_{RAY} = \frac{\int \tau(\lambda) B_{\lambda} \, \mathrm{d}\lambda}{\int B_{\lambda} \, \mathrm{d}\lambda} \]
\( \displaystyle \tau(\lambda) \) is called TAUVAR
For a given \( \displaystyle \lambda \), we have \( \displaystyle TAURAY(\lambda) = \tau(\lambda) dP\)
here
\( \displaystyle \tau_{RAY}(\lambda) = \frac{\sigma_{exok}{g * m_{molecule}} \)