Difference between revisions of "Rayleigh scattering"
From Planets
Noe clement (talk | contribs) |
Noe clement (talk | contribs) |
||
Line 21: | Line 21: | ||
TAURAY(NW) | TAURAY(NW) | ||
+ | |||
+ | \documentclass{minimal} | ||
+ | \usepackage[french]{babel} | ||
+ | |||
+ | \begin{document} | ||
+ | En~1735, Leonhard Euler résout le \textbf{problème de Bâle} en établissant | ||
+ | la formule suivante: | ||
+ | \[ | ||
+ | \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} | ||
+ | \] | ||
+ | Cependant, il ne démontrera rigoureusement son résultat qu’en~1741. | ||
+ | \end{document} |
Revision as of 14:24, 28 September 2022
About Rayleigh scattering in LMDZ Generic
Formalism
References
Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF
Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol
Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document
Equation
in optcv.F90 :
TRAY(K,NW) = TAURAY(NW) * DPR(K)
TAURAY(NW) is calculated in calc_rayleigh.F90
TAURAY(NW)
\documentclass{minimal} \usepackage[french]{babel}
\begin{document} En~1735, Leonhard Euler résout le \textbf{problème de Bâle} en établissant la formule suivante: '"`UNIQ-MathJax1-QINU`"' Cependant, il ne démontrera rigoureusement son résultat qu’en~1741. \end{document}