Difference between revisions of "Rayleigh scattering"

From Planets
Jump to: navigation, search
Line 49: Line 49:
 
=== exo_k formalism ===
 
=== exo_k formalism ===
  
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with <math> \displaystyle \sigma_{exok} </math> the cross section and dN in molecules/m2
+
TRAY = sigma_mol dN with sigma_mol the cross section and dN in molecules/m2
  
which gives : TRAY <math> \displaystyle = \sigma_{exok} \frac{dm}{m_{molecule}} </math> with dm in kg/m2
+
which gives : TRAY = sigma_mol <math> \displaystyle \frac{dm}{m_{molecule}} </math> with dm in kg/m2
  
and then : TRAY <math> \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP</math>
+
and then : TRAY <math> \displaystyle = \frac{\text{sigma_mol}}{g * m_{molecule}} dP</math>
  
 
=== Relations between LMDZ & Exo_k formalisms ===
 
=== Relations between LMDZ & Exo_k formalisms ===
Line 59: Line 59:
 
LMDZ & exo_k formalism are linked as following :
 
LMDZ & exo_k formalism are linked as following :
  
<math> \displaystyle \text{TAURAY} = \frac{\sigma_{exok}}{g * m_{molecule}} </math>
+
<math> \displaystyle \text{TAURAY} = \frac{\text{sigma_mol}}}{g * m_{molecule}} </math>
  
 
Be careful with units !!! (cm-1 for wavenumbers in exo_k, microns for wavelengths in LMDZ, not to forget the ''scalep'' factor in LMDZ)
 
Be careful with units !!! (cm-1 for wavenumbers in exo_k, microns for wavelengths in LMDZ, not to forget the ''scalep'' factor in LMDZ)

Revision as of 16:49, 28 September 2022

About Rayleigh scattering

The following article gives a clear overview on Rayleigh scattering cross sections :

Bodhaine (1999) On Rayleigh Optical Depth Calculations : http://web.gps.caltech.edu/~vijay/Papers/Rayleigh_Scattering/Bodhaine-etal-99.pdf

Have a look especially on equations (2) and (9).

About Rayleigh scattering in LMDZ Generic

References

LMDZ

LMDZ uses formalism from :

Hansen (1974) Light scattering in planetary atmospheres : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF

Have a look on equations (2.29) to (2.32).

exo_k

Rayleigh routine in exo_k is avalaible here :

http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol

Exo_k uses formalism from :

Caldas (2019) Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day–night temperature gradients : https://hal.archives-ouvertes.fr/hal-02005332/document

Have a look on equation (12) & appendix D

Formalism

We consider a layer .

DPR(K) is the difference of pressure between the two levels that define the layer.

dm is the mass per m2 of the layer

We consider the channel NW

LMDZ formalism

In LMDZ, in optcv.F90 we have :

TRAY(K,NW) = TAURAY(NW) * DPR(K)

exo_k formalism

TRAY = sigma_mol dN with sigma_mol the cross section and dN in molecules/m2

which gives : TRAY = sigma_mol \( \displaystyle \frac{dm}{m_{molecule}} \) with dm in kg/m2

and then : TRAY \( \displaystyle = \frac{\text{sigma_mol}}{g * m_{molecule}} dP\)

Relations between LMDZ & Exo_k formalisms

LMDZ & exo_k formalism are linked as following \[ \displaystyle \text{TAURAY} = \frac{\text{sigma_mol}}}{g * m_{molecule}} \]

Be careful with units !!! (cm-1 for wavenumbers in exo_k, microns for wavelengths in LMDZ, not to forget the scalep factor in LMDZ)

To be noticed

TAURAY(NW) is calculated in calc_rayleigh.F90.

It is in fact TAUVAR which calculated, and then averaged by the black body function for each channel to give TAURAY \[ \text{TAURAY(NW)} = \frac{\int_{\lambda' \in \text{channel}} \text{TAUVAR} (\lambda') B_{\lambda} \, \mathrm{d}\lambda'}{\int B_{\lambda} \, \mathrm{d}\lambda'} \]

TAUVAR is cut into two parts : TAUCONSTI et TAUVARI with TAUVAR = TAUCONSTI * TAUVARI

The \( \lambda \) dependence is in the TAUVARI