Difference between revisions of "Rayleigh scattering"
Noe clement (talk | contribs) |
Noe clement (talk | contribs) |
||
Line 14: | Line 14: | ||
==== Relations between LMDZ & Exo_k formalisms ==== | ==== Relations between LMDZ & Exo_k formalisms ==== | ||
− | in optcv.F90 : | + | In LMDZ, in optcv.F90 we have : |
TRAY(K,NW) = TAURAY(NW) * DPR(K) | TRAY(K,NW) = TAURAY(NW) * DPR(K) | ||
− | In exo_k we have : | + | In exo_k, in rayleigh.py we have : |
TRAY <math> \displaystyle = \sigma_{exok} dN </math> with <math> \displaystyle \sigma_{exok} </math> the cross section and dN in molecules/m2 | TRAY <math> \displaystyle = \sigma_{exok} dN </math> with <math> \displaystyle \sigma_{exok} </math> the cross section and dN in molecules/m2 |
Revision as of 15:07, 28 September 2022
Contents
About Rayleigh scattering in LMDZ Generic
Formalism
References
Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF
Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol
Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document
Relations between LMDZ & Exo_k formalisms
In LMDZ, in optcv.F90 we have :
TRAY(K,NW) = TAURAY(NW) * DPR(K)
In exo_k, in rayleigh.py we have :
TRAY \( \displaystyle = \sigma_{exok} dN \) with \( \displaystyle \sigma_{exok} \) the cross section and dN in molecules/m2
which gives : TRAY \( \displaystyle = \sigma_{exok} \frac{dm}{m_{molecule}} \) with dm in kg/m2
and then : TRAY \( \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP\)
so
\( \displaystyle \text{TAURAY} = \frac{\sigma_{exok}}{g * m_{molecule}} \)
To be noticed :
TAURAY(NW) is calculated in calc_rayleigh.F90.
It is in fact TAUVAR which calculated, and then averaged by the black body function for each channel to give TAURAY \[ \text{TAURAY(NW)} = \frac{\int_{\lambda' \in \text{channel}} \text{TAUVAR} (\lambda') B_{\lambda} \, \mathrm{d}\lambda'}{\int B_{\lambda} \, \mathrm{d}\lambda'} \]