Difference between revisions of "Rayleigh scattering"

From Planets
Jump to: navigation, search
Line 12: Line 12:
 
''Caldas'' (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document
 
''Caldas'' (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document
  
==== Equation ====
+
==== Relations between LMDZ & Exo_k formalisms ====
  
 
in optcv.F90 :
 
in optcv.F90 :
Line 38: Line 38:
  
 
<math> \text{TAURAY(NW)} = \frac{\int_{\lambda' \in \text{channel}} \text{TAUVAR} (\lambda') B_{\lambda} \, \mathrm{d}\lambda'}{\int B_{\lambda} \, \mathrm{d}\lambda'} </math>
 
<math> \text{TAURAY(NW)} = \frac{\int_{\lambda' \in \text{channel}} \text{TAUVAR} (\lambda') B_{\lambda} \, \mathrm{d}\lambda'}{\int B_{\lambda} \, \mathrm{d}\lambda'} </math>
 
<math> \displaystyle \tau(\lambda) </math> is called TAUVAR
 

Revision as of 15:07, 28 September 2022

About Rayleigh scattering in LMDZ Generic

Formalism

References

Hansen (1974) : https://ui.adsabs.harvard.edu/link_gateway/1974SSRv...16..527H/ADS_PDF

Rayleigh routine in exo_k : http://perso.astrophy.u-bordeaux.fr/~jleconte/exo_k-doc/_modules/exo_k/rayleigh.html#Rayleigh.sigma_mol

Exo_k uses formalism from : Caldas (2019) : https://hal.archives-ouvertes.fr/hal-02005332/document

Relations between LMDZ & Exo_k formalisms

in optcv.F90 :

TRAY(K,NW) = TAURAY(NW) * DPR(K)

In exo_k we have :

TRAY \( \displaystyle = \sigma_{exok} dN \) with \( \displaystyle \sigma_{exok} \) the cross section and dN in molecules/m2

which gives : TRAY \( \displaystyle = \sigma_{exok} \frac{dm}{m_{molecule}} \) with dm in kg/m2

and then : TRAY \( \displaystyle = \frac{\sigma_{exok}}{g * m_{molecule}} dP\)

so

\( \displaystyle \text{TAURAY} = \frac{\sigma_{exok}}{g * m_{molecule}} \)


To be noticed :

TAURAY(NW) is calculated in calc_rayleigh.F90.

It is in fact TAUVAR which calculated, and then averaged by the black body function for each channel to give TAURAY \[ \text{TAURAY(NW)} = \frac{\int_{\lambda' \in \text{channel}} \text{TAUVAR} (\lambda') B_{\lambda} \, \mathrm{d}\lambda'}{\int B_{\lambda} \, \mathrm{d}\lambda'} \]