Difference between revisions of "Plots With PyVista"

From Planets
Jump to: navigation, search
Line 90: Line 90:
 
yy_bounds = _cell_bounds(y_polar)
 
yy_bounds = _cell_bounds(y_polar)
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
1. We prepare the surface layer (here using surface temperature)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 1. PREPARE THE SURFACE LAYER
 
 
surface_level = [RADIUS] # surface level
 
surface_level = [RADIUS] # surface level
 
grid_scalar1 = pv.grid_from_sph_coords(xx_bounds, yy_bounds, surface_level)
 
grid_scalar1 = pv.grid_from_sph_coords(xx_bounds, yy_bounds, surface_level)
Line 102: Line 103:
 
grid_scalar1.cell_arrays["example"] = np.array(scalar_surface).swapaxes(-2, -1).ravel("C")
 
grid_scalar1.cell_arrays["example"] = np.array(scalar_surface).swapaxes(-2, -1).ravel("C")
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a first plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
Line 116: Line 119:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
2. We create the 3D spherical shell (3D grid lines)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 2. CREATE THE 3D SPHERICAL SHELL (GRID LINES)
 
 
radial_shell = np.linspace(0, RADIUS*1.2, 15)
 
radial_shell = np.linspace(0, RADIUS*1.2, 15)
 
xx_shell, yy_shell, zz_shell = np.meshgrid(np.radians(np.arange(90, 365, resolution_lon_GCM)), np.radians(np.arange(-84, 84, resolution_lat_GCM)), radial_shell)
 
xx_shell, yy_shell, zz_shell = np.meshgrid(np.radians(np.arange(90, 365, resolution_lon_GCM)), np.radians(np.arange(-84, 84, resolution_lat_GCM)), radial_shell)
Line 128: Line 132:
 
grid_shell['radials'] = zz_shell.ravel(order='F')
 
grid_shell['radials'] = zz_shell.ravel(order='F')
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a second plot
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# SECOND PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 143: Line 147:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
3. We prepare for the array of wind arrows.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 3. PREPARE THE WIND LAYER
 
 
 
freq_call_wind=2 # used to change the frequency of wind pattern
 
freq_call_wind=2 # used to change the frequency of wind pattern
 
MULT_FACTOR_ZWIND=100. # scaling factor of vertical wind so that we can see it in the plot
 
MULT_FACTOR_ZWIND=100. # scaling factor of vertical wind so that we can see it in the plot
Line 182: Line 186:
 
grid_winds.point_arrays["example"] = vectors
 
grid_winds.point_arrays["example"] = vectors
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a third plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# THIRD PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 198: Line 202:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
4.1 We create a cloud layer (first option using 2D cloud layer)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 4. CREATE THE CLOUD LAYERS (LEVEL 1)
 
 
 
# Number of vertical levels
 
# Number of vertical levels
 
nlev = 3
 
nlev = 3
Line 233: Line 237:
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.00005])
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.00005])
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a fourth plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# FOURTH PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 250: Line 254:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
4.2 We create a cloud layer (second, more advanced option using 3D cloud layer)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 5. CREATE THE CLOUD LAYERS (LEVEL 2)
 
 
 
# Get the 3D field of water ice clouds
 
# Get the 3D field of water ice clouds
 
scalar_ice = np.zeros((len(lat_GCM),len(lon_GCM)-1,len(alt_GCM)),dtype='f')
 
scalar_ice = np.zeros((len(lat_GCM),len(lon_GCM)-1,len(alt_GCM)),dtype='f')
Line 281: Line 285:
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.9e-8])
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.9e-8])
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a fifth plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# FOURTH PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 298: Line 302:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a first series of .png files (rotating the azimuth angle) to be used to build a .gif animated plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
#FINALLY WE MAKE THE GIF
 
 
 
total_step_gif=100
 
total_step_gif=100
 
for i in range(0,total_step_gif,1):
 
for i in range(0,total_step_gif,1):
Line 324: Line 328:
 
     print("we are at step = ", i, "/",total_step_gif)
 
     print("we are at step = ", i, "/",total_step_gif)
  
print('OPERATION FINISHED')
+
print('FINISHED')
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a second series of .png files (rotating the azimuth angle and the elevation of the camera) to be used to build a .gif animated plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
#GIF WITH VARIATION OF CAMERA ELEVATION
 
 
 
total_step_gif=100
 
total_step_gif=100
 
for i in range(0,total_step_gif,1):
 
for i in range(0,total_step_gif,1):
Line 352: Line 356:
 
     print("we are at step = ", i, "/",total_step_gif)
 
     print("we are at step = ", i, "/",total_step_gif)
  
print('OPERATION FINISHED')
+
print('FINISHED')
 
</syntaxhighlight>
 
</syntaxhighlight>

Revision as of 10:32, 4 September 2022

We provide here a tutorial on how to make pretty visuals from GCM simulations. Do not hesitate to send us your best visuals so that we can enrich our GCM plot gallery.


We first import all the required libraries:

import pyvista as pv
import numpy as np
from netCDF4 import Dataset

First, we get the data from the GCM and extract all fields to be plotted later.

# 4D GRID VARIABLES
nc1 = Dataset('diagfi.nc')

Time_GCM=nc1.variables['Time'][:]
lat_GCM=nc1.variables['latitude'][:]
lon_GCM=nc1.variables['longitude'][:]
alt_GCM=nc1.variables['altitude'][:]
aire_GCM=nc1.variables['aire'][:][:]

resolution_lon_GCM = abs(lon_GCM[1]-lon_GCM[0])
resolution_lat_GCM = abs(lat_GCM[1]-lat_GCM[0])

# 2D VARIABLES
tsurf1=nc1.variables['tsurf'][:][:][:]
h2o_ice_col1=nc1.variables['h2o_ice_col'][:][:][:]

# 3D VARIABLES
u1=nc1.variables['u'][:][:][:][:]
v1=nc1.variables['v'][:][:][:][:]
w1=nc1.variables['w'][:][:][:][:]
ice1=nc1.variables['h2o_ice'][:][:][:][:]

We define coordinates to be used by PyVista.

# DEFINE REFERENCE RADIUS OF THE PLANET
RADIUS = 1.0

# Longitudes and latitudes used to plot the GCM simulation
x = lon_GCM[0:len(lon_GCM)-1]+180.
y = lat_GCM[0:len(lat_GCM)]

# Define polar coordinates
y_polar = 90.0 - y  # grid_from_sph_coords() expects polar angle


# FUNCTION TO CALCULATE COORDINATE CELL BOUNDARIES
def _cell_bounds(points, bound_position=0.5):
    """
    Calculate coordinate cell boundaries.

    Parameters
    ----------
    points: numpy.array
        One-dimensional array of uniformly spaced values of shape (M,)
    bound_position: bool, optional
        The desired position of the bounds relative to the position
        of the points.

    Returns
    -------
    bounds: numpy.array
        Array of shape (M+1,)

    Examples
    --------
    >>> a = np.arange(-1, 2.5, 0.5)
    >>> a
    array([-1. , -0.5,  0. ,  0.5,  1. ,  1.5,  2. ])
    >>> cell_bounds(a)
    array([-1.25, -0.75, -0.25,  0.25,  0.75,  1.25,  1.75,  2.25])
    """
    assert points.ndim == 1, "Only 1D points are allowed"
    diffs = np.diff(points)
    delta = diffs[0] * bound_position
    bounds = np.concatenate([[points[0] - delta], points + delta])
    return bounds


# Create arrays of grid cell boundaries, which have shape of (x.shape[0] + 1)
xx_bounds = _cell_bounds(x)
yy_bounds = _cell_bounds(y_polar)

1. We prepare the surface layer (here using surface temperature)

surface_level = [RADIUS] # surface level
grid_scalar1 = pv.grid_from_sph_coords(xx_bounds, yy_bounds, surface_level)

for i_time in range(0,len(Time_GCM),1):
    # Scalar data for the surface
    scalar_surface = tsurf1[i_time,:,0:(len(lon_GCM)-1)]

grid_scalar1.cell_arrays["example"] = np.array(scalar_surface).swapaxes(-2, -1).ravel("C")

We make a first plot.

# FIRST PLOT
    
p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.camera_position = 'yz'
p.camera.azimuth = 130.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_only.png",window_size=[1000,1000])#, transparent_background=True)
p.show()

2. We create the 3D spherical shell (3D grid lines)

radial_shell = np.linspace(0, RADIUS*1.2, 15)
xx_shell, yy_shell, zz_shell = np.meshgrid(np.radians(np.arange(90, 365, resolution_lon_GCM)), np.radians(np.arange(-84, 84, resolution_lat_GCM)), radial_shell)
# Transform to spherical coordinates
x_shell = zz_shell * np.cos(yy_shell) * np.cos(xx_shell)
y_shell = zz_shell * np.cos(yy_shell) * np.sin(xx_shell)
z_shell = zz_shell * np.sin(yy_shell)
grid_shell = pv.StructuredGrid(x_shell, y_shell, z_shell)
grid_shell['radials'] = zz_shell.ravel(order='F')

We make a second plot

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid.png",window_size=[1000,1000])#, transparent_background=True)
p.show()

3. We prepare for the array of wind arrows.

freq_call_wind=2 # used to change the frequency of wind pattern
MULT_FACTOR_ZWIND=100. # scaling factor of vertical wind so that we can see it in the plot
wind_level = [RADIUS * 1.02] # altitude of the wind layer (on the plot)

i_alt=13 # altitude of the wind layer (in the GCM data)

for i_time in range(0,len(Time_GCM),1):
    # Scalar data for the winds
    scalar_u_wind = u1[i_time,i_alt,:,0:(len(lon_GCM)-1)]
    scalar_v_wind = v1[i_time,i_alt,:,0:(len(lon_GCM)-1)]
    scalar_w_wind = w1[i_time,i_alt,:,0:(len(lon_GCM)-1)]

inv_axes = [*range(scalar_u_wind[::freq_call_wind,::freq_call_wind].ndim)[::-1]]
# Transform vectors to cartesian coordinates
vectors = np.stack(
        [
            i.transpose(inv_axes).swapaxes(-2, -1).ravel("C")
            for i in pv.transform_vectors_sph_to_cart(
                x[::freq_call_wind],
                y_polar[::freq_call_wind],
                wind_level[::freq_call_wind],
                scalar_u_wind[::freq_call_wind,::freq_call_wind].transpose(inv_axes),
                -scalar_v_wind[::freq_call_wind,::freq_call_wind].transpose(inv_axes),  # Minus sign because y-vector in polar coords is required
                -MULT_FACTOR_ZWIND*scalar_w_wind[::freq_call_wind,::freq_call_wind].transpose(inv_axes),
            )
        ],
        axis=1,
    )
# Scale vectors to make them visible
vectors *= RADIUS * 0.01
# Create a grid for the vectors
grid_winds = pv.grid_from_sph_coords(x[::freq_call_wind], y_polar[::freq_call_wind], wind_level)
# Add vectors to the grid
grid_winds.point_arrays["example"] = vectors

We make a third plot.

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid_with_winds.png",window_size=[1000,1000])#, transparent_background=True)
p.show()

4.1 We create a cloud layer (first option using 2D cloud layer)

# Number of vertical levels
nlev = 3
table_level=np.arange(nlev)

# artificial empty layers above and below the clouds
table_level[0]=0.
table_level[1]=1.
table_level[2]=0.

for i_time in range(0,len(Time_GCM),1):
    # Scalar data for the clouds
    scalar_cloud = h2o_ice_col1[i_time,:,0:(len(lon_GCM)-1)]

# 3D cloud layer
scalar_cloud_3d = (
scalar_cloud.repeat(nlev).reshape((*scalar_cloud.shape, nlev)) * table_level[np.newaxis, np.newaxis, :]).transpose(2, 0, 1)

# geometry of the grid
z_scale = RADIUS/20.
levels2 = z_scale * (np.arange(scalar_cloud_3d.shape[0] + 1)) + RADIUS*1.01
print (levels2)

# Create a structured grid by transforming coordinates
grid_scalar_cloud_3d = pv.grid_from_sph_coords(xx_bounds, yy_bounds, levels2)

# Add data to the grid
grid_scalar_cloud_3d.cell_arrays["example"] = np.array(scalar_cloud_3d).swapaxes(-2, -1).ravel("C")

# Create a set of isosurfaces
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.00005])

We make a fourth plot.

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid_with_winds_with_2D_clouds.png",window_size=[1000,1000])#, transparent_background=True)
p.show()

4.2 We create a cloud layer (second, more advanced option using 3D cloud layer)

# Get the 3D field of water ice clouds
scalar_ice = np.zeros((len(lat_GCM),len(lon_GCM)-1,len(alt_GCM)),dtype='f')
for i_time in range(0,len(Time_GCM),1):
    for i in range(0,len(lat_GCM),1):
        for j in range(0,len(lon_GCM)-1,1):
            for k in range(0,len(alt_GCM),1):
                scalar_ice[i,j,k]=ice1[i_time,k,i,j]
            
nlev = len(alt_GCM)+1
table_level=np.arange(nlev)

# geometry of the grid
z_scale = RADIUS/50.
levels2 = RADIUS*1.01+ z_scale * table_level

# 3D cloud layer
scalar_cloud_3d = (np.clip(scalar_ice,0,1.0e8)).transpose(2, 0, 1) # clip to a=amax

# Create a structured grid by transforming coordinates
grid_scalar_cloud_3d = pv.grid_from_sph_coords(xx_bounds, yy_bounds, levels2)

# Add data to the grid
grid_scalar_cloud_3d.cell_arrays["example"] = np.array(scalar_cloud_3d).swapaxes(-2, -1).ravel("C")

# Create a set of isosurfaces
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.9e-8])

We make a fifth plot.

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid_with_winds_with_3D_clouds.png",window_size=[1000,1000])#, transparent_background=True)
p.show()

We make a first series of .png files (rotating the azimuth angle) to be used to build a .gif animated plot.

total_step_gif=100
for i in range(0,total_step_gif,1):
    p = pv.Plotter(i)
    p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
    p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
    p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
    p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
    p.camera_position = 'yz'
    p.camera.azimuth = i*360/total_step_gif
    p.camera.roll += 0.
    p.camera.elevation = 30
    p.set_background('white')
    if(i<10):
        p.screenshot("gif_planet_000"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=10) and (i_time<100)):
        p.screenshot("gif_planet_00"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=100) and (i_time<1000)):
        p.screenshot("gif_planet_0"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=1000) and (i_time<10000)):
        p.screenshot("gif_planet_"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    print("we are at step = ", i, "/",total_step_gif)

print('FINISHED')

We make a second series of .png files (rotating the azimuth angle and the elevation of the camera) to be used to build a .gif animated plot.

total_step_gif=100
for i in range(0,total_step_gif,1):
    p = pv.Plotter(i)
    p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
    p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
    p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
    p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
    p.camera_position = 'yz'
    p.camera.azimuth = i*360/total_step_gif
    p.camera.roll += 0.
    p.camera.elevation = 45+15*np.cos((i*360/total_step_gif)*np.pi/180.)
    p.set_background('white')
    if(i<10):
        p.screenshot("gif_planet_000"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=10) and (i_time<100)):
        p.screenshot("gif_planet_00"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=100) and (i_time<1000)):
        p.screenshot("gif_planet_0"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=1000) and (i_time<10000)):
        p.screenshot("gif_planet_"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    print("we are at step = ", i, "/",total_step_gif)

print('FINISHED')