Difference between revisions of "Building Surface Topography Files"
(→What is a surface topography map?) |
(→Getting topography and surface data) |
||
(26 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
As a reminder, our database of surface topography files is available here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/ | As a reminder, our database of surface topography files is available here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/ | ||
− | == | + | == Getting topography and surface data == |
− | <syntaxhighlight lang=" | + | A few options to do that: |
− | + | * use existing topographic data for solar system objects. We have already formatted the data for most solar system objects, so please ask someone in the team if your topography map is not already here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/ | |
+ | * use your own data files | ||
+ | |||
+ | You can also derive data files by digitalizing images. See below an example: | ||
+ | |||
+ | [[File:rico_topography.png|thumb|rico_topography.png]] | ||
+ | |||
+ | <syntaxhighlight lang="python"> | ||
+ | from numpy import * | ||
+ | import numpy as np | ||
+ | import matplotlib.pyplot as mpl | ||
+ | import math | ||
+ | from PIL import Image | ||
+ | |||
+ | # Here we first digitalize a png image name "rico_topography.png" | ||
+ | |||
+ | image = Image.open('rico_topography.png') # For simplicity, we work here in a 360 longitude pixels x 180 latitude pixels | ||
+ | pix = image.load() | ||
+ | image_width, image_height = image.size | ||
+ | topography_data=np.zeros((image_width, image_height),dtype='f') | ||
+ | |||
+ | # Here we convert the pixels into some rules for the elevation map | ||
+ | |||
+ | for i in range(0,image_width,1): | ||
+ | for j in range(0,image_height,1): | ||
+ | if(pix[i,j][0]<1. and pix[i,j][1]<1. and pix[i,j][2]<1.): | ||
+ | topography_data[i,j]=5. # in km | ||
+ | else: | ||
+ | topography_data[i,j]=0. # in km | ||
+ | |||
+ | # Here we write the topography map into an ascii file | ||
+ | |||
+ | name_file='rico_topography.txt' | ||
+ | |||
+ | with open(name_file, 'w') as f1: | ||
+ | for j in range(0,image_height,1): | ||
+ | for i in range(0,image_width-1,1): | ||
+ | print("{:12.5e}".format(topography_data[i,j]),file=f1,end=' ') | ||
+ | print("{:12.5e}".format(topography_data[image_width-1,j]),file=f1,end='\n') | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | |||
− | == | + | |
+ | This requires the use of the PIL library, and the rico_topography.png file. | ||
+ | |||
+ | == Convert the data into a netcdf surface topography map == | ||
+ | |||
+ | We have developed Python routines to easily convert surface data files (elevation, albedo, thermal inertia) into GCM-compatible surface topography files. This requires the use of the xarray library. | ||
+ | |||
+ | Please find below examples: | ||
+ | |||
+ | <syntaxhighlight lang="python"> | ||
+ | from numpy import * | ||
+ | import numpy as np | ||
+ | import matplotlib.pyplot as mpl | ||
+ | import math | ||
+ | import xarray as xr | ||
+ | |||
+ | # 1. WE GET THE SURFACE TOPOGRAPHY DATA | ||
+ | nc = xr.open_dataset('surface_mars.nc',decode_times=False) # can be any netcdf file (e.g. start/startfi.nc files) | ||
+ | |||
+ | # 2. WE READ THE VARIABLES | ||
+ | lat=nc['latitude'] | ||
+ | lon=nc['longitude'] | ||
+ | albedo=nc['albedo'] | ||
+ | thermal_inertia=nc['thermal'] | ||
+ | elevation=nc['zMOL'] | ||
+ | |||
+ | # BELOW THE VARIABLES WE WANT TO UPDATE | ||
+ | new_elevation = np.empty((len(lat),len(lon))) | ||
+ | new_thermal_inertia = np.empty((len(lat),len(lon))) | ||
+ | new_albedo = np.empty((len(lat),len(lon))) | ||
+ | |||
+ | # LOOP TO MODIFY THE VARIABLES | ||
+ | |||
+ | # EXAMPLE 1 - CUSTOM TOPOGRAPHY | ||
+ | rico_topography=np.loadtxt('rico_topography.txt') # 360 lon x 180 lat | ||
+ | for i in range(0,len(lat),1): | ||
+ | for j in range(0,len(lon),1): | ||
+ | if(rico_topography[i,j]>1.): | ||
+ | new_elevation[i,j]=rico_topography[i,j] # here you put whatever you want ; in this example, we use the topography data of rico_topography.txt | ||
+ | new_albedo[i,j]=0.5 # here you put whatever you want ; we put high albedo because RICO is so bright his albedo must be high | ||
+ | new_thermal_inertia[i,j]=2000. # here you put whatever you want | ||
+ | else: | ||
+ | new_elevation[i,j]=0. # here you put whatever you want | ||
+ | new_albedo[i,j]=0.2 # here you put whatever you want | ||
+ | new_thermal_inertia[i,j]=500. # here you put whatever you want | ||
+ | |||
+ | # EXAMPLE 2 - MARS WITH AN OCEAN | ||
+ | """for i in range(0,len(lat),1): | ||
+ | for j in range(0,len(lon),1): | ||
+ | new_elevation[i,j]=max(elevation[i,j],-3.9) # here you put whatever you want ; in this example, we take the (MOLA) topography of present-day Mars and modify it to fill the topographic depressions with an ocean at an altitude of -3.9km | ||
+ | new_albedo[i,j]=albedo[i,j] # here you put whatever you want | ||
+ | new_thermal_inertia[i,j]=thermal_inertia[i,j] # here you put whatever you want""" | ||
+ | |||
+ | # SANITY CHECK PLOTS | ||
+ | |||
+ | fig1 = mpl.figure(1) | ||
+ | mpl.contourf(lon,lat,elevation) | ||
+ | mpl.xlabel('longitude (deg)') | ||
+ | mpl.ylabel('latitude (deg)') | ||
+ | mpl.show() | ||
+ | |||
+ | fig2 = mpl.figure(2) | ||
+ | mpl.contourf(lon,lat,new_elevation) | ||
+ | mpl.xlabel('longitude (deg)') | ||
+ | mpl.ylabel('latitude (deg)') | ||
+ | mpl.show() | ||
+ | |||
+ | # CREATE THE NEW NETCDF TOPOGRAPHY FILE | ||
+ | |||
+ | nc['albedo'].values = new_albedo | ||
+ | nc['zMOL'].values = new_elevation | ||
+ | nc['thermal'].values = new_thermal_inertia | ||
+ | nc.to_netcdf('new_topography.nc') | ||
+ | |||
+ | </syntaxhighlight> | ||
+ | |||
+ | == Using a new topography in the model == | ||
+ | |||
+ | Now that you have your netcdf surface topography file ready, simply add the surface topography netcdf file in your datagcm/surface_data/ directory, and then follow the tutorial here: https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Advanced_Use_of_the_GCM#How_to_Change_the_Topography_.28or_remove_it.29 |
Latest revision as of 14:59, 8 November 2023
Here we present a simple tutorial to build a new topography map that can be used in the Generic PCM.
Surface topography maps are netcdf files stored in your /datagcm/surface_data/ repository. Such files contain information on terrain elevations, as well as albedo and thermal inertia.
As a reminder, our database of surface topography files is available here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/
Getting topography and surface data
A few options to do that:
- use existing topographic data for solar system objects. We have already formatted the data for most solar system objects, so please ask someone in the team if your topography map is not already here: https://web.lmd.jussieu.fr/~lmdz/planets/LMDZ.GENERIC/datagcm/surface_data/
- use your own data files
You can also derive data files by digitalizing images. See below an example:
from numpy import *
import numpy as np
import matplotlib.pyplot as mpl
import math
from PIL import Image
# Here we first digitalize a png image name "rico_topography.png"
image = Image.open('rico_topography.png') # For simplicity, we work here in a 360 longitude pixels x 180 latitude pixels
pix = image.load()
image_width, image_height = image.size
topography_data=np.zeros((image_width, image_height),dtype='f')
# Here we convert the pixels into some rules for the elevation map
for i in range(0,image_width,1):
for j in range(0,image_height,1):
if(pix[i,j][0]<1. and pix[i,j][1]<1. and pix[i,j][2]<1.):
topography_data[i,j]=5. # in km
else:
topography_data[i,j]=0. # in km
# Here we write the topography map into an ascii file
name_file='rico_topography.txt'
with open(name_file, 'w') as f1:
for j in range(0,image_height,1):
for i in range(0,image_width-1,1):
print("{:12.5e}".format(topography_data[i,j]),file=f1,end=' ')
print("{:12.5e}".format(topography_data[image_width-1,j]),file=f1,end='\n')
This requires the use of the PIL library, and the rico_topography.png file.
Convert the data into a netcdf surface topography map
We have developed Python routines to easily convert surface data files (elevation, albedo, thermal inertia) into GCM-compatible surface topography files. This requires the use of the xarray library.
Please find below examples:
from numpy import *
import numpy as np
import matplotlib.pyplot as mpl
import math
import xarray as xr
# 1. WE GET THE SURFACE TOPOGRAPHY DATA
nc = xr.open_dataset('surface_mars.nc',decode_times=False) # can be any netcdf file (e.g. start/startfi.nc files)
# 2. WE READ THE VARIABLES
lat=nc['latitude']
lon=nc['longitude']
albedo=nc['albedo']
thermal_inertia=nc['thermal']
elevation=nc['zMOL']
# BELOW THE VARIABLES WE WANT TO UPDATE
new_elevation = np.empty((len(lat),len(lon)))
new_thermal_inertia = np.empty((len(lat),len(lon)))
new_albedo = np.empty((len(lat),len(lon)))
# LOOP TO MODIFY THE VARIABLES
# EXAMPLE 1 - CUSTOM TOPOGRAPHY
rico_topography=np.loadtxt('rico_topography.txt') # 360 lon x 180 lat
for i in range(0,len(lat),1):
for j in range(0,len(lon),1):
if(rico_topography[i,j]>1.):
new_elevation[i,j]=rico_topography[i,j] # here you put whatever you want ; in this example, we use the topography data of rico_topography.txt
new_albedo[i,j]=0.5 # here you put whatever you want ; we put high albedo because RICO is so bright his albedo must be high
new_thermal_inertia[i,j]=2000. # here you put whatever you want
else:
new_elevation[i,j]=0. # here you put whatever you want
new_albedo[i,j]=0.2 # here you put whatever you want
new_thermal_inertia[i,j]=500. # here you put whatever you want
# EXAMPLE 2 - MARS WITH AN OCEAN
"""for i in range(0,len(lat),1):
for j in range(0,len(lon),1):
new_elevation[i,j]=max(elevation[i,j],-3.9) # here you put whatever you want ; in this example, we take the (MOLA) topography of present-day Mars and modify it to fill the topographic depressions with an ocean at an altitude of -3.9km
new_albedo[i,j]=albedo[i,j] # here you put whatever you want
new_thermal_inertia[i,j]=thermal_inertia[i,j] # here you put whatever you want"""
# SANITY CHECK PLOTS
fig1 = mpl.figure(1)
mpl.contourf(lon,lat,elevation)
mpl.xlabel('longitude (deg)')
mpl.ylabel('latitude (deg)')
mpl.show()
fig2 = mpl.figure(2)
mpl.contourf(lon,lat,new_elevation)
mpl.xlabel('longitude (deg)')
mpl.ylabel('latitude (deg)')
mpl.show()
# CREATE THE NEW NETCDF TOPOGRAPHY FILE
nc['albedo'].values = new_albedo
nc['zMOL'].values = new_elevation
nc['thermal'].values = new_thermal_inertia
nc.to_netcdf('new_topography.nc')
Using a new topography in the model
Now that you have your netcdf surface topography file ready, simply add the surface topography netcdf file in your datagcm/surface_data/ directory, and then follow the tutorial here: https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Advanced_Use_of_the_GCM#How_to_Change_the_Topography_.28or_remove_it.29