Difference between revisions of "Overview of the Venus PCM"

From Planets
Jump to: navigation, search
(Bibliography)
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
 
In a nutshell the Venus PCM is a suite of models combining the Venus physics package and a dynamical core which may be LMDZ (the historical lon-lat grid), DYNAMICO (a more recent icosahedral dynamical core) or WRF (limited area dynamical core).
 
In a nutshell the Venus PCM is a suite of models combining the Venus physics package and a dynamical core which may be LMDZ (the historical lon-lat grid), DYNAMICO (a more recent icosahedral dynamical core) or WRF (limited area dynamical core).
  
 +
== Getting started ==
 
The traditional Venus PCM - LMDZ (formerly know as the IPSL Venus GCM) is the most commonly used version. For a first try at installing running the Venus PCM we recommend you start from the [[Quick Install and Run Venus PCM]] page. You will also most likely be interested in all the pages tagged as "Venus-Model" or "Venus-LMDZ" in the [[Special:Categories|Categories]] section.
 
The traditional Venus PCM - LMDZ (formerly know as the IPSL Venus GCM) is the most commonly used version. For a first try at installing running the Venus PCM we recommend you start from the [[Quick Install and Run Venus PCM]] page. You will also most likely be interested in all the pages tagged as "Venus-Model" or "Venus-LMDZ" in the [[Special:Categories|Categories]] section.
  
 
== Bibliography ==
 
== Bibliography ==
  
TODO: Add reference articles here
+
Some recent reference articles:
 
+
==== 2023 ====
 +
* Stolzenbach, A.; Lefèvre, F.; Lebonnois, S. and Määttänen, A., '''Three-dimensional modeling of Venus photochemistry and clouds''', Icarus, vol.395, pp.115447 (2023). DOI: https://doi.org/10.1016/j.icarus.2023.115447
 +
* Martinez, A.; Lebonnois, S.; Millour, E.; Pierron, T.; Moisan, E.; Gilli, G. and Lefèvre, F., '''Exploring the variability of the venusian thermosphere with the IPSL Venus GCM''', Icarus, vol.389, pp.115272 (2023). DOI: https://doi.org/10.1016/j.icarus.2022.115272
 +
==== 2022 ====
 +
* Lefèvre, M.; Marcq, E. and F. Lefèvre., F. , '''The Impact of Turbulent Vertical Mixing in the Venus Clouds on Chemical Tracers''', Icarus, 86, 115148 (2022). DOI: https://doi.org/10.1016/j.icarus.2022.115148
 +
* Lefèvre, M., '''Venus boundary layer dynamics: eolian transport and convective vortex''', Icarus, 387, 115167 (2022) DOI: https://doi.org/10.1016/j.icarus.2022.115167
 +
==== 2021 ====
 +
* Navarro, T.; Gilli, G.; Schubert, G.; Lebonnois, S.; Lefèvre, F. and Quirino, D., '''Venus' upper atmosphere revealed by a GCM: I. Structure and variability of the circulation''', Icarus, vol.366, pp.114400 (2021). DOI: https://doi.org/10.1016/j.icarus.2021.114400
 +
* Gilli, G.; Navarro, T.; Lebonnois, S.; Quirino, D.; Silva, V.; Stolzenbach, A.; Lefèvre, F. and Schubert, G., '''Venus upper atmosphere revealed by a GCM: II. Model validation with temperature and density measurements''', Icarus, vol.366, pp.114432 (2021). DOI: https://doi.org/10.1016/j.icarus.2021.114432
 +
==== 2020 ====
 +
* Lefèvre, M.; Spiga, A. and Lebonnois, S., '''Mesoscale modeling of Venus' bow-shape waves''', Icarus, vol.335, pp.113376 (2020). DOI: https://doi.org/10.1016/j.icarus.2019.07.010
 +
==== 2018 ====
 +
* Lebonnois, S.; Schubert, G.; Forget, F. and Spiga, A., '''Planetary boundary layer and slope winds on Venus''', Icarus, vol.314, pp.149 (2018). DOI: https://doi.org/10.1016/j.icarus.2018.06.006
 +
* Garate-Lopez, I. and Lebonnois, S., '''Latitudinal variation of clouds' structure responsible for Venus' cold collar''', Icarus, vol.314, pp.1 (2018). DOI: https://doi.org/10.1016/j.icarus.2018.05.011
 +
* Navarro, T.; Schubert, G. and Lebonnois, S., '''Atmospheric mountain wave generation on Venus and its influence on the solid planet's rotation rate''', Nature Geoscience, vol.11, pp.487 (2018). DOI: https://doi.org/10.1038/s41561-018-0157-x
 +
* Navarro, T.; Schubert, G. and Lebonnois, S., '''Author Correction: Atmospheric mountain wave generation on Venus and its influence on the solid planet's rotation rate''', Nature Geoscience, vol.11, pp.965 (2018). DOI: https://doi.org/10.1038/s41561-018-0257-7
 +
* Lefèvre, M.; Lebonnois, S. and Spiga, A., '''Three-Dimensional Turbulence-Resolving Modeling of the Venusian Cloud Layer and Induced Gravity Waves: Inclusion of Complete Radiative Transfer and Wind Shear''', Journal of Geophysical Research (Planets), vol.123, pp.2773 (2018). DOI: https://doi.org/10.1029/2018JE005679
 +
 
 
[[Category:Venus-Model]]
 
[[Category:Venus-Model]]
 +
[[Category:Venus-LMDZ]]

Latest revision as of 13:32, 19 October 2023

Welcome to the overview page of the Venus Planetary Climate Model

The Venus PCM (Planetary Climate Model)

In a nutshell the Venus PCM is a suite of models combining the Venus physics package and a dynamical core which may be LMDZ (the historical lon-lat grid), DYNAMICO (a more recent icosahedral dynamical core) or WRF (limited area dynamical core).

Getting started

The traditional Venus PCM - LMDZ (formerly know as the IPSL Venus GCM) is the most commonly used version. For a first try at installing running the Venus PCM we recommend you start from the Quick Install and Run Venus PCM page. You will also most likely be interested in all the pages tagged as "Venus-Model" or "Venus-LMDZ" in the Categories section.

Bibliography

Some recent reference articles:

2023

  • Stolzenbach, A.; Lefèvre, F.; Lebonnois, S. and Määttänen, A., Three-dimensional modeling of Venus photochemistry and clouds, Icarus, vol.395, pp.115447 (2023). DOI: https://doi.org/10.1016/j.icarus.2023.115447
  • Martinez, A.; Lebonnois, S.; Millour, E.; Pierron, T.; Moisan, E.; Gilli, G. and Lefèvre, F., Exploring the variability of the venusian thermosphere with the IPSL Venus GCM, Icarus, vol.389, pp.115272 (2023). DOI: https://doi.org/10.1016/j.icarus.2022.115272

2022

2021

  • Navarro, T.; Gilli, G.; Schubert, G.; Lebonnois, S.; Lefèvre, F. and Quirino, D., Venus' upper atmosphere revealed by a GCM: I. Structure and variability of the circulation, Icarus, vol.366, pp.114400 (2021). DOI: https://doi.org/10.1016/j.icarus.2021.114400
  • Gilli, G.; Navarro, T.; Lebonnois, S.; Quirino, D.; Silva, V.; Stolzenbach, A.; Lefèvre, F. and Schubert, G., Venus upper atmosphere revealed by a GCM: II. Model validation with temperature and density measurements, Icarus, vol.366, pp.114432 (2021). DOI: https://doi.org/10.1016/j.icarus.2021.114432

2020

2018

  • Lebonnois, S.; Schubert, G.; Forget, F. and Spiga, A., Planetary boundary layer and slope winds on Venus, Icarus, vol.314, pp.149 (2018). DOI: https://doi.org/10.1016/j.icarus.2018.06.006
  • Garate-Lopez, I. and Lebonnois, S., Latitudinal variation of clouds' structure responsible for Venus' cold collar, Icarus, vol.314, pp.1 (2018). DOI: https://doi.org/10.1016/j.icarus.2018.05.011
  • Navarro, T.; Schubert, G. and Lebonnois, S., Atmospheric mountain wave generation on Venus and its influence on the solid planet's rotation rate, Nature Geoscience, vol.11, pp.487 (2018). DOI: https://doi.org/10.1038/s41561-018-0157-x
  • Navarro, T.; Schubert, G. and Lebonnois, S., Author Correction: Atmospheric mountain wave generation on Venus and its influence on the solid planet's rotation rate, Nature Geoscience, vol.11, pp.965 (2018). DOI: https://doi.org/10.1038/s41561-018-0257-7
  • Lefèvre, M.; Lebonnois, S. and Spiga, A., Three-Dimensional Turbulence-Resolving Modeling of the Venusian Cloud Layer and Induced Gravity Waves: Inclusion of Complete Radiative Transfer and Wind Shear, Journal of Geophysical Research (Planets), vol.123, pp.2773 (2018). DOI: https://doi.org/10.1029/2018JE005679