Difference between revisions of "Non orographic gravity waves drag"

From Planets
Jump to: navigation, search
(More advance description of the stochastic non-orographic gravity waves drag parametrization)
 
(22 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
In the code, the FORTRAN file corresponding to this parametrization is <syntaxhighlight lang="fortran">nonoro_gwd_ran_mod.F90</syntaxhighlight>
 
In the code, the FORTRAN file corresponding to this parametrization is <syntaxhighlight lang="fortran">nonoro_gwd_ran_mod.F90</syntaxhighlight>
  
Inherited and adapted from Earth's model (F. Lott)\citep{lott_2012,lott_2013}, Venus' model (F. LOTT, and S. LEBONNOIS)\citep{gilli_2017} and Mars' model (G.GILLI, F. FORGET and D.BARDET)\citep{gilli_2020}.
+
Inherited and adapted from Earth's model (F. Lott), this parametrization has been implemented in the Venus PCM (F. LOTT, and S. LEBONNOIS), in the Mars PCM (G.GILLI, F. FORGET and J.LIU), and in the Generic PCM (D.BARDET and J.LIU).
Parametrization implemented in the Generic PCM by D.BARDET is the case of Giant Planets and updated J.LIU
+
However, we would like to draw the reader's attention to the fact that there may be some subtle differences from one model to another, which may be specific to Mars and/or Venus. But, the formalism in the Generic model is intended to remain very generic.
+
 
 
== Dedicated flags to call in the ''callphys.def'' ==
 
== Dedicated flags to call in the ''callphys.def'' ==
  
To activate this parametrization:  
+
To activate this parametrization: <syntaxhighlight lang="fortran"> calllott_nonoro=True </syntaxhighlight>
  
 
You have to set the maximum value of the Eliassen-Palm flux that can be transported by the wave package:
 
You have to set the maximum value of the Eliassen-Palm flux that can be transported by the wave package:
 
<syntaxhighlight lang="fortran">
 
<syntaxhighlight lang="fortran">
epflux_max
+
nonoro_gwd_epflux_max
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
Additional parameters can be also change in the ''callphys.def'' (do not worry if you do not want to change them, they have default values in the code)  
 
Additional parameters can be also change in the ''callphys.def'' (do not worry if you do not want to change them, they have default values in the code)  
 
<syntaxhighlight lang="fortran">
 
<syntaxhighlight lang="fortran">
sat ! default gravity waves saturation value = 1.  !!
+
nonoro_gwd_sat ! default gravity waves saturation value = 1.  !!
cmax ! default gravity waves phase velocity value = 30.  !!
+
nonoro_gwd_cmax ! default gravity waves phase velocity value = 30.  !!
rdiss ! default coefficient of dissipation = 1 !!
+
nonoro_gwd_rdiss ! default coefficient of dissipation = 1 !!
kmax ! default Max horizontal wavenumber = 1.e-4 !!
+
nonoro_gwd_kmax ! default Max horizontal wavenumber = 1.e-4 !!
</syntaxhighlight>
 
 
 
== Inputs and outputs of the module ==
 
 
 
<syntaxhighlight lang="fortran">
 
! 0.1 INPUTS
 
    INTEGER, intent(in):: ngrid          ! number of atmospheric columns
 
    INTEGER, intent(in):: nlayer          ! number of atmospheric columns
 
    REAL, intent(in):: dtime              ! Time step of the Physics
 
    REAL, intent(in):: zmax_therm(ngrid)  ! Altitude of max velocity thermals (m)
 
    REAL,INTENT(IN) :: cpnew(ngrid,nlayer)! Cp of the atmosphere
 
    REAL,INTENT(IN) :: rnew(ngrid,nlayer) ! R of the atmosphere
 
    REAL, intent(in):: pp(ngrid, nlayer)  ! Pressure at full levels(Pa)
 
    REAL, intent(in):: pt(ngrid, nlayer)  ! Temperature at full levels(K)
 
    REAL, intent(in):: pu(ngrid, nlayer)  ! Zonal wind at full levels(m/s)
 
    REAL, intent(in):: pv(ngrid, nlayer)  ! Meridional wind at full levels(m/s)
 
    REAL, intent(in):: pdt(ngrid, nlayer) ! Tendency on temperature(K/s)
 
    REAL, intent(in):: pdu(ngrid, nlayer) ! Tendency on zonal wind(m/s/s)
 
    REAL, intent(in):: pdv(ngrid, nlayer) ! Tendency on meridional wind(m/s/s)
 
! 0.2 OUTPUTS
 
    REAL, intent(out):: zustr(ngrid)        ! Zonal surface stress
 
    REAL, intent(out):: zvstr(ngrid)        ! Meridional surface stress
 
    REAL, intent(out):: d_t(ngrid, nlayer)  ! Tendency on temperature (K/s) due to gravity waves (not used set to zero)
 
    REAL, intent(out):: d_u(ngrid, nlayer)  ! Tendency on zonal wind (m/s/s) due to gravity waves
 
    REAL, intent(out):: d_v(ngrid, nlayer)  ! Tendency on meridional wind (m/s/s) due to gravity waves
 
 
</syntaxhighlight>
 
</syntaxhighlight>
 
 
  
 
== Underlying hypotheses and limitations ==
 
== Underlying hypotheses and limitations ==
  
* input flux compensated in the deepest layers
+
* Wave characteristic calculation using MOD
 
* Variable EP-flux according to PBL variation (max velocity thermals)
 
* Variable EP-flux according to PBL variation (max velocity thermals)
* reproductibility of the launching altitude calculation  
+
* Reproducibility of the launching altitude calculation
* wave characteristic calculation using MOD
 
* adding east_gwstress and west_gwstress variables
 
* The rho (density) at the specific locations is introduced. The equation of EP-flux is corrected by adding the term of density at launch (source) altitude(level)
 
 
 
== Equations that are being solved, whenever possible ==
 
  
 +
== More advance description of the stochastic non-orographic gravity waves drag parametrization ==
 +
$$\newcommand{\Re}{\mathrm{Re}\,}
 +
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$$
  
 
In this numerical scheme, at each time step and on each point of the horizontal grid, a finite number of waves, with randomly chosen characteristics, are launched upwards.
 
In this numerical scheme, at each time step and on each point of the horizontal grid, a finite number of waves, with randomly chosen characteristics, are launched upwards.
 
This multi-wave formalism generalises Eckermann's stochastic method and enables a very large number of waves to be generated at low cost.
 
This multi-wave formalism generalises Eckermann's stochastic method and enables a very large number of waves to be generated at low cost.
The wave packet sent into the atmosphere is composed of M=NK$\times$NO$\times$NP types of waves, with NK=2 values for the wave number, NO=2 absolute values for the phase velocity and NP=2 propagation directions (eastward and westward) for the non-orbiting gravity waves.
+
The wave packet sent into the atmosphere is composed of M=NK$$\times$$NO$$\times$$NP types of waves, with NK=2 values for the wave number, NO=2 absolute values for the phase velocity and NP=2 propagation directions (eastward and westward) for the non-orbiting gravity waves.
This approach enables the GCM to process a large set of waves at a given time $t$ by adding the effect of these M=8 waves to that of the waves launched at previous time steps, in order to calculate trends.   
+
This approach enables the GCM to process a large set of waves at a given time $$t$$ by adding the effect of these M=8 waves to that of the waves launched at previous time steps, in order to calculate trends.   
  
  
The $\Delta t$ life cycle of gravity waves, i.e. from their generation to their break-up, is significantly longer than the $\delta t$ time step of the GCM.
+
The $$\Delta t$$ life cycle of gravity waves, i.e. from their generation to their break-up, is significantly longer than the $$\delta t$$ time step of the GCM.
On Earth, gravity wave theory indicates that atmospheric disturbances induced by convection have life cycles of about 1 day. \citep{lott_2013}.
+
On Earth, gravity wave theory indicates that atmospheric disturbances induced by convection have life cycles of about 1 day.
  
The spectrum, made up of triple discrete Fourier series, is discretised into 770 stochastic harmonics ($\approx$ M $\times \Delta t/\delta t$) which contribute to the wave field each day and at a given horizontal grid point.  
+
The spectrum, made up of triple discrete Fourier series, is discretised into 770 stochastic harmonics ($$\approx$$ M $$\times \Delta t/\delta t$$) which contribute to the wave field each day and at a given horizontal grid point.  
At each time $t$, the $\omega'$ vertical velocity field of upward propagating gravity waves can be represented by this sum:
+
At each time $$t$$, the $$\omega'$$ vertical velocity field of upward propagating gravity waves can be represented by this sum:
  
 
\begin{equation}
 
\begin{equation}
Line 79: Line 50:
 
\label{eq:GWD_sum_vertical_velocity}
 
\label{eq:GWD_sum_vertical_velocity}
 
\end{equation}
 
\end{equation}
\noindent where $C_n$ are the normalisation coefficients, such that $\sum_{n=1}^{\infty} C_{n}^{2}=1$.
+
where $$C_n$$ are the normalisation coefficients, such that $$\sum_{n=1}^{\infty} C_{n}^{2}=1$$.
 
This is therefore a simple multi-wave representation, based on the principle of wave superposition, which is particularly suitable when linear dynamics is sufficient to describe the flow, where critical levels of wave absorption come into play.  
 
This is therefore a simple multi-wave representation, based on the principle of wave superposition, which is particularly suitable when linear dynamics is sufficient to describe the flow, where critical levels of wave absorption come into play.  
  
Here each of the vertical velocities $\omega‘_{n}$ can be treated independently of the others, and each coefficient $C_{n}^{2}$ is taken as the probability that the wave field is given by the vertical velocity of the gravity wave $\omega’_{n}$ :
+
Here each of the vertical velocities $$\omega'_{n}$$ can be treated independently of the others, and each coefficient $$C_{n}^{2}$$ is taken as the probability that the wave field is given by the vertical velocity of the gravity wave $$\omega’_{n}$$:
  
 
\begin{equation}
 
\begin{equation}
Line 88: Line 59:
 
\label{eq:GWD_vertical_velocity_one}
 
\label{eq:GWD_vertical_velocity_one}
 
\end{equation}
 
\end{equation}
\noindent where the wave numbers $k_n$, $l_n$ and frequency $w_n$ are chosen at random.  
+
where the wave numbers $$k_n$$, $$l_n$$ and frequency $$w_n$$ are chosen at random.  
  
  
In this formulation, $H$ is a vertical scale characteristic of the mean atmosphere under consideration and $z$ is the logarithmic pressure altitude $z = H \ln(P_r /P)$, with $P_r$ a reference pressure, taken here at source height (i.e. above typical convective cells).
+
In this formulation, $$H$$ is a vertical scale characteristic of the mean atmosphere under consideration and $$z$$ is the logarithmic pressure altitude $$z = H \ln(P_r /P)$$, with $$P_r$$ a reference pressure, taken here at source height (i.e. above typical convective cells).
  
To evaluate the amplitude of $\omega'_{n}$, the vertical velocity is calculated randomly at a given launch altitude $z_0$, then iterated from one model level $z_1$ to the next $z_2$ by a non-rotating Wentzel-Kramers-Brillouin (WKB) approximation :}. Method developed by Léon Brillouin, Hendrik Anthony Kramers and Gregor Wentzel in 1926 to study the semi-classical regime of a quantum system. Based on quantum mechanics and therefore the wave nature of particles, the wave function is developed asymptotically to first order of the power of the $\hbar$ action quantum. The idea is that the Schrödinger equation is derived from the wave propagation equation, where it should therefore be possible to recover classical mechanics in the limit where $\hbar \rightarrow 0$, just as it is possible to recover geometrical optics when $\lambda \rightarrow 0$ in the theory of wave optics}.  
+
To evaluate the amplitude of $$\omega'_{n}$$, the vertical velocity is calculated randomly at a given launch altitude $$z_0$$, then iterated from one model level $$z_1$$ to the next $$z_2$$ by a non-rotating Wentzel-Kramers-Brillouin (WKB) approximation. Method developed by Léon Brillouin, Hendrik Anthony Kramers and Gregor Wentzel in 1926 to study the semi-classical regime of a quantum system. Based on quantum mechanics and therefore the wave nature of particles, the wave function is developed asymptotically to first order of the power of the $$\hbar$$ action quantum. The idea is that the Schrödinger equation is derived from the wave propagation equation, where it should therefore be possible to recover classical mechanics in the limit where $$\hbar \rightarrow 0$$, just as it is possible to recover geometrical optics when $$\lambda \rightarrow 0$$ in the theory of wave optics.  
Using this expression and the polarisation relation between the amplitudes of the large-scale horizontal wind $\hat{u}$ and the vertical wind $\hat{omega}$ (not shown here), it is possible to define the Eliassen-Palm flux of the wave packet sent into the atmosphere:
+
Using this expression and the polarisation relation between the amplitudes of the large-scale horizontal wind $$\hat{u}$$ and the vertical wind $$\hat{\omega}$$ (not shown here), it is possible to define the Eliassen-Palm flux of the wave packet sent into the atmosphere:
  
 
\begin{equation}
 
\begin{equation}
Line 100: Line 71:
 
\label{eq:GWD_EPflux}
 
\label{eq:GWD_EPflux}
 
\end{equation}
 
\end{equation}
\noindent with $k$, $l$ the horizontal wavenumbers and $w$ the frequency of the vertical velocity field.  
+
with $$k$$, $$l$$ the horizontal wavenumbers and $$w$$ the frequency of the vertical velocity field.  
This is included in the vertical wavenumber $m = \frac{N \lvert \overrightarrow{k} \rvert}{\Omega} $, according to the non-rotating WKB approximation, in the limit $H \rightarrow \infty$, with $\Omega = v - \overrightarrow{k}\overrightarrow{u}$ and $N$ the Brünt-Väisälä frequency \citep{lott_2012}.  
+
This is included in the vertical wavenumber $$m = \frac{N \lvert \overrightarrow{k} \rvert}{\Omega} $$, according to the non-rotating WKB approximation, in the limit $$H \rightarrow \infty$$, with $$\Omega = v - \overrightarrow{k}\overrightarrow{u}$$ and $$N$$ the Brünt-Väisälä frequency.  
In equation \ref{eq:GWD_EPflux}, $\rho_{r}$ is the density of the fluid at the reference pressure level $P_r$.
+
In equation \ref{eq:GWD_EPflux}, $$\rho_{r}$$ is the density of the fluid at the reference pressure level $$P_r$$.
  
 
   
 
   
In this scheme, $\hat{\omega}_{n}$ and the Eliassen Palm flow are randomly imposed at a given launch altitude $z_0$.  
+
In this scheme, $$\hat{\omega}_{n}$$ and the Eliassen Palm flow are randomly imposed at a given launch altitude $$z_0$$.  
A constant vertical viscosity $\mu$ (equation 4 in \cite{lott_2012}) controls the vertical distribution of gravity wave drag near the top of the model.  
+
A constant vertical viscosity $$\mu$$ (equation 4 in Lott et al. 2012) controls the vertical distribution of gravity wave drag near the top of the model.  
To move from one vertical level to the one just above, the Eliassen Palm flux is essentially conserved, but may undergo a small diffusivity, $\nu = \mu/\rho_0$, which can be included by replacing $\Omega$ by $\Omega + i\nu m^{2}$.  
+
To move from one vertical level to the one just above, the Eliassen Palm flux is essentially conserved, but may undergo a small diffusivity, $$\nu = \mu/\rho_0$$, which can be included by replacing $$\Omega$$ by $$\Omega + i\nu m^{2}$$.  
This small diffusivity guarantees that the waves are finally dissipated on the last few levels of the model, if they have not been dissipated before (hence the division by the density $\rho_0$).  
+
This small diffusivity guarantees that the waves are finally dissipated on the last few levels of the model, if they have not been dissipated before (hence the division by the density $$\rho_0$$).  
Moreover, this new amplitude of the Eliassen Palm flux is limited to that produced by a saturated monochromatic $\hat{omega}_{s}$ wave following \citep{lindzen_1981} :
+
Moreover, this new amplitude of the Eliassen Palm flux is limited to that produced by a saturated monochromatic $$\hat{\omega}_{s}$$ wave following :
  
 
\begin{equation}
 
\begin{equation}
Line 116: Line 87:
 
\end{equation}
 
\end{equation}
  
\noindent or $\hat{\omega}$ = 0 when $\Omega$ changes sign, to deal with critical levels.  
+
where $$\hat{\omega}$$ = 0 when $$\Omega$$ changes sign, to deal with critical levels.  
In equation \ref{eq:GWD_breaking_vertical_velocity}, $S_{c}$ is a setting parameter and $k^{*}$ a characteristic horizontal wave number corresponding to the largest parameterized wave.
+
In equation \ref{eq:GWD_breaking_vertical_velocity}, $$S_{c}$$ is a setting parameter and $$k^{*}$$ a characteristic horizontal wave number corresponding to the largest parameterized wave.
  
  
  
Finally, the $\rho^{-1}\delta_z \overrightarrow{F}^{z}_{n‘}$ ($n’$=1, M) trends produced by the drag of the M generated gravity waves are calculated through the wind trends to be applied to the horizontal zonal wind.  
+
Finally, the $$\rho^{-1}\delta_z \overrightarrow{F}^{z}_{n‘}$$ ($$n’$$=1, M) trends produced by the drag of the M generated gravity waves are calculated through the wind trends to be applied to the horizontal zonal wind.  
Since the $\omega'_n$ speeds are independent realisations, the mean trend produced is the average of these M trends.
+
Since the $$\omega'_n$$ speeds are independent realisations, the mean trend produced is the average of these M trends.
Thus, the average trend is first redistributed over the longest time scale $\delta t$ by rescaling it by $\delta t / \Delta t$ and then, the first-order autoregressive relationship (AR-1)\footnote{\textbf{First-order autoregressive relationship:} In statistics or signal processing, an AR model is a representation of a time-varying random process (such as nature or the economy).
+
Thus, the average trend is first redistributed over the longest time scale $$\delta t$$ by rescaling it by $$\delta t / \Delta t$$ and then, the first-order autoregressive relationship (AR-1) is used as follows:
The auto-regressive model specifies that the final variable depends linearly on its previous values and a stochastic term (imperfect predictive term), the specificity of order 1 being that the previous values are those obtained at the time step just prior to the one under consideration. In this case the values of the zonal wind trends at the previous time step $frac{\delta t - \delta t}{\delta t} \left( \frac{\delta \overrightarrow{u}}{\delta t} \right)^{t-. \frac{\delta t}_{GW}$ are added to the drag of the stochastic gravity wave packet of the current time step $\frac{\delta t}{\Delta t}\frac{1}{M}\sum^{M}_{n‘ = 1}\frac{1}{\rho_{0}}\frac{\delta \overrightarrow{F}^{z}_{n’}}{\delta z}$. } described in \cite{lott_2012} is used as follows:
 
  
 
\begin{equation}
 
\begin{equation}
Line 130: Line 100:
 
\label{eq:GWD_zonal_wind_forcing}
 
\label{eq:GWD_zonal_wind_forcing}
 
\end{equation}
 
\end{equation}
\noindent to highlight the formalised superposition of stochastic waves from the cumulative sum of zonal wind tendencies due to gravity waves, taking as a normalisation coefficient :  
+
to highlight the formalised superposition of stochastic waves from the cumulative sum of zonal wind tendencies due to gravity waves, taking as a normalisation coefficient:  
  
  
Line 137: Line 107:
 
\label{eq:normalize_coeff}
 
\label{eq:normalize_coeff}
 
\end{equation}
 
\end{equation}
\noindent où $q$ est le nombre entier le plus proche qui arrondit (n-1)/M (c'est-à-dire vers des valeurs plus faibles).
+
where $$q$$ is the nearest integer that rounds (n-1)/M (i.e. towards lower values).
  
\newpage
 
\subsection{Paramètres de réglage}
 
\label{GWD_parametres}
 
 
 
 
The characteristics of each wave launched into the GCM are chosen at random with a prescribed probability distribution, the limits of which are the key parameters of the model.  
 
The characteristics of each wave launched into the GCM are chosen at random with a prescribed probability distribution, the limits of which are the key parameters of the model.  
These are chosen on the basis of observational constraints (where available) and theoretical considerations.
+
These are chosen on the basis of observational constraints (where available) and theoretical considerations.
 
 
 
 
 
 
 
 
<!-- L'un des avantages du schéma utilisé ici est que chaque paramètre a une signification physique, comme décrit ci-dessous :
 
 
 
 
 
\subsubsection{Source et durée de vie des ondes de gravité :}
 
 
 
Tout d'abord, la paramétrisation présentée ici s'appuie sur l'hypothèse que la source des ondes de gravité (GW) non-orographiques est placée au-dessus des cellules convectives de la troposphère.
 
 
 
Le paramètre contrôlant le niveau de lancement des ondes z$_0$ est $\sigma$ = P/Ps. %, ce qui correspond à une région centrée à environ 250 Pa (8 km), couvrant des pressions de 160 Pa à 348 Pa, en fonction de la pression de surface Ps et variant avec la saison.
 
Comme aucune information sur l'altitude de lancement des ondes n'a été observée au cours de la mission \emph{Cassini-Huygens}, ou avec des télescopes depuis le sol, l'altitude de lancement du paquet d'ondes sera un paramètre à régler.
 
En considérant la pression de ``surface'' Ps égale à la pression en bas du domaine modélisé (3 bar), je vais commencer les tests en imposant une valeur arbitraire de $\sigma$=0,4 correspond à une pression de lancement d'ondes à 1,2 bar.
 
Puis je tenterai d'ajuster la valeur de $\sigma$ une fois que les paramètres les plus impactant (l'amplitude maximale du flux d'Eliassen Palm et la vitesse de phase maximale des ondes) auront été fixés, voir tableau \ref{tab:GWD_param_test_61lvl}. 
 
 
 
La source est choisie pour être uniforme, sans variation de la latitude, et à part les profils atmosphériques par lesquels la propagation des GW est modélisée, rien d'autre dans le schéma ne varie en fonction du lieu ou de la saison.
 
Étant donné que les GW non-orographiques sont censées être générées par des sources multiples (convection, accélération de jet, etc.) et que cela représente une interaction complexe de l'échelle de temps pour les GCM, la source est supposée continue sur toute la journée, ce qui est cohérent avec l'absence de cycle diurne pour les géantes gazeuses.
 
 
 
 
 
\subsubsection{Amplitude maximale du flux d'Eliassen Palm :}
 
 
 
L'amplitude maximale du flux d'Eliassen Palm F$^{z}$ (équation \ref{eq:GWD_EPflux}), associé aux ondes de gravité, donne le taux de transfert vertical du moment horizontal de l'onde par unité de surface.
 
Cette valeur n'a jamais été mesurée dans l'atmosphère de Saturne, et représente donc un degré de liberté important dans la paramétrisation.
 
 
 
Dans ce schéma, la valeur maximale de la distribution de probabilité F$_{max}^{z}$ est imposée à l'altitude de lancement z$_0$, pour chaque simulation test réalisée.
 
Afin de définir F$_{max}^{0}$, je me suis appuyée sur des estimations de flux de quantité de mouvement estimée à partir des observations de température dans la stratosphère équatoriale.
 
Sachant que la composante verticale du flux de quantité de mouvement des ondes diminue seulement lorsque les ondes déposent de la quantité de mouvement dans l'atmosphère, \cite{guerlet_2018} ont pu estimer cette grandeur par unité de densité en multipliant le taux de descente induit par les ondes par le changement net du vent zonal entre les phases opposées de l'oscillation \citep{dunkerton_1991}.
 
Ainsi, cette étude a montré que le flux de quantité de mouvement des ondes diminue avec l'altitude, avec un flux moyen de quantité de mouvement d'onde absorbé dans la stratosphère  (e.g. $\rho\bar{u'\omega'}$) de l'ordre de $\approx$7$\times$10$^{-6}$ kg m$^{-1}$ s$^{-2}$.
 
Cette estimation permet de fournir une contrainte en ordre de grandeur pour les modèles.
 
 
 
Il convient de souligner ici que l'approche stochastique mise en œuvre dans ce schéma a l'avantage de traiter une grande diversité d'ondes de gravité émises, et donc une grande diversité de flux d'énergie cinétique.
 
Le paramètre principal est l'amplitude maximale du flux d'Eliassen Palm à l'altitude de lancement, c'est pourquoi j'ai testé plusieurs valeurs de F$^{0}_{max}$ comprise entre 10$^{-7}$ kg m$^{-1}$ s$^{-2}$ et 10$^{-4}$ kg m$^{-1}$ s$^{-2}$, afin de largement encadrer la valeur estimée à partir des observations de \cite{guerlet_2018}.
 
Ensuite, l'amplitude du flux d'Eliassen Palm pour chaque onde de gravité est choisie aléatoirement entre 0 et F$_{max}^{0}$.
 
J'ai fixé 10$^{-7}$ kg m$^{-1}$  s$^{-2}$ comme limite inférieure pour ces essais car l'impact des GW est négligeable dans DYNAMICO-Saturn pour un flux de quantité de mouvement inférieur à cette valeur, par rapport à une simulation sans la paramétrisation.
 
 
 
 
 
\subsubsection{Nombre d'onde horizontal des ondes de gravité :}
 
 
 
Le nombre d'onde horizontal des ondes de gravité $ \lvert k \rvert$ est défini de la même façon que pour la Terre \citep{lott_2012} et est distribué de la façon suivante : $k^{*} < \lvert k \rvert < k_{s}$.
 
 
 
La valeur minimale est $k^{*} = \sqrt{1/ \Delta x\Delta y}$, où $\Delta x$ et $\Delta y$ sont équivalents aux dimensions d'une maille horizontale de DYNAMICO-Saturn ($\delta x$ et $\delta y \approx$ 525 km).
 
Cette valeur correspond aux ondes les plus longues que l'on paramètre avec la résolution horizontale actuelle du GCM.
 
 
 
La valeur maximale, et donc saturée, est $k_{s} < N/u_{0}$, $N$ est la racine carré de la fréquence de Brünt-Väisälä associée à l'écoulement moyen et $u_{0}$ est le vent zonal moyen à l'altitude source $z_{0}$ des ondes de gravité.
 
 
 
Les longueurs d'ondes horizontale minimale et maximale correspondantes pour les ondes de gravité ($\lambda_h$ = 2$\pi$/$k$ ) sont comprises entre 63 km et 3~000 km.
 
 
 
 
 
\subsubsection{Vitesse de phase des ondes de gravité}
 
 
 
La vitesse de phase des ondes de gravité $\lvert C \rvert = \lvert \omega/k \rvert$ est également un paramètre clé.
 
Comme l'ensemble des paramètres de réglage, la vitesse de phase des ondes $\lvert C \rvert$ est une distribution aléatoire de valeurs comprises entre une valeur minimale C$_{min}$ et une valeur maximale C$_{max}$.
 
Ici, C$_{min}$ est fixé à 1 m s$^{-1}$, pour obtenir un paquet d'ondes de gravité non-stationnaires. %et C$_{max}$ est égal à la vitesse de propagation du vent zonal $u$ à l'altitude source $z_{0}$.
 
L'effet de l'ensemble des ondes de gravité sur l'oscillation équatoriale de Saturne, qu'elles se propagent vers l'est (C $>$ 0) ou vers l'ouest (C $<$ 0), est considéré dans cette étude.
 
Quatre valeurs pour C$_{max}$ ont été testées pour évaluer la sensibilité du vent et de la température à ce paramètre. J'ai réalisé des tests pour C$_{max}$=15 m~s$^{-1}$, C$_{max}$=30 m~s$^{-1}$, C$_{max}$=70 m~s$^{-1}$ et C$_{max}$=100 m~s$^{-1}$.
 
  
  
\subsubsection{Saturation des ondes de gravité}
+
'''Reference papers'''
La saturation des ondes de gravité, S$_c$, est également un paramètre de réglage dans ce schéma, qui contrôle le déferlement des ondes de gravité en limitant l'amplitude de $w_{s}$.
 
Ici, j'ai choisi de laisser une valeur de saturation neutre S$_c$ = 1. -->
 
  
 +
Lott et al. (2012) [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL051001]
 +
Lott and Guez (2013) [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrd.50705]
  
== Important variables and their names in the code ==
+
[[Category: Generic-Model]] [[Category: Mars-Model]] [[Category: Venus-Model]]

Latest revision as of 11:22, 30 April 2025

Description of the physical process

Parametrization of the momentum flux deposition due to a discrete number of gravity waves randomly generated by setting their waves characteristics (set as Gaussian distribution).

In the code, the FORTRAN file corresponding to this parametrization is
nonoro_gwd_ran_mod.F90

Inherited and adapted from Earth's model (F. Lott), this parametrization has been implemented in the Venus PCM (F. LOTT, and S. LEBONNOIS), in the Mars PCM (G.GILLI, F. FORGET and J.LIU), and in the Generic PCM (D.BARDET and J.LIU). However, we would like to draw the reader's attention to the fact that there may be some subtle differences from one model to another, which may be specific to Mars and/or Venus. But, the formalism in the Generic model is intended to remain very generic.

Dedicated flags to call in the callphys.def

To activate this parametrization:
 calllott_nonoro=True

You have to set the maximum value of the Eliassen-Palm flux that can be transported by the wave package:

nonoro_gwd_epflux_max

Additional parameters can be also change in the callphys.def (do not worry if you do not want to change them, they have default values in the code)

nonoro_gwd_sat ! default gravity waves saturation value = 1.  !!
nonoro_gwd_cmax ! default gravity waves phase velocity value = 30.  !!
nonoro_gwd_rdiss ! default coefficient of dissipation = 1 !!
nonoro_gwd_kmax ! default Max horizontal wavenumber = 1.e-4 !!

Underlying hypotheses and limitations

  • Wave characteristic calculation using MOD
  • Variable EP-flux according to PBL variation (max velocity thermals)
  • Reproducibility of the launching altitude calculation

More advance description of the stochastic non-orographic gravity waves drag parametrization

$$\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$$

In this numerical scheme, at each time step and on each point of the horizontal grid, a finite number of waves, with randomly chosen characteristics, are launched upwards. This multi-wave formalism generalises Eckermann's stochastic method and enables a very large number of waves to be generated at low cost. The wave packet sent into the atmosphere is composed of M=NK$$\times$$NO$$\times$$NP types of waves, with NK=2 values for the wave number, NO=2 absolute values for the phase velocity and NP=2 propagation directions (eastward and westward) for the non-orbiting gravity waves. This approach enables the GCM to process a large set of waves at a given time $$t$$ by adding the effect of these M=8 waves to that of the waves launched at previous time steps, in order to calculate trends.


The $$\Delta t$$ life cycle of gravity waves, i.e. from their generation to their break-up, is significantly longer than the $$\delta t$$ time step of the GCM. On Earth, gravity wave theory indicates that atmospheric disturbances induced by convection have life cycles of about 1 day.

The spectrum, made up of triple discrete Fourier series, is discretised into 770 stochastic harmonics ($$\approx$$ M $$\times \Delta t/\delta t$$) which contribute to the wave field each day and at a given horizontal grid point. At each time $$t$$, the $$\omega'$$ vertical velocity field of upward propagating gravity waves can be represented by this sum:

\begin{equation} \omega' = \sum_{n = 1}^{\infty} C_{n} \omega'_{n} \label{eq:GWD_sum_vertical_velocity} \end{equation} where $$C_n$$ are the normalisation coefficients, such that $$\sum_{n=1}^{\infty} C_{n}^{2}=1$$. This is therefore a simple multi-wave representation, based on the principle of wave superposition, which is particularly suitable when linear dynamics is sufficient to describe the flow, where critical levels of wave absorption come into play.

Here each of the vertical velocities $$\omega'_{n}$$ can be treated independently of the others, and each coefficient $$C_{n}^{2}$$ is taken as the probability that the wave field is given by the vertical velocity of the gravity wave $$\omega’_{n}$$:

\begin{equation} \omega'_{n} = \Re \{ \hat{\omega}_{n}(z) e^{z/2H} e^{i(k_{n}x+l_{n}y-w_{n}t)} \} \label{eq:GWD_vertical_velocity_one} \end{equation} where the wave numbers $$k_n$$, $$l_n$$ and frequency $$w_n$$ are chosen at random.


In this formulation, $$H$$ is a vertical scale characteristic of the mean atmosphere under consideration and $$z$$ is the logarithmic pressure altitude $$z = H \ln(P_r /P)$$, with $$P_r$$ a reference pressure, taken here at source height (i.e. above typical convective cells).

To evaluate the amplitude of $$\omega'_{n}$$, the vertical velocity is calculated randomly at a given launch altitude $$z_0$$, then iterated from one model level $$z_1$$ to the next $$z_2$$ by a non-rotating Wentzel-Kramers-Brillouin (WKB) approximation. Method developed by Léon Brillouin, Hendrik Anthony Kramers and Gregor Wentzel in 1926 to study the semi-classical regime of a quantum system. Based on quantum mechanics and therefore the wave nature of particles, the wave function is developed asymptotically to first order of the power of the $$\hbar$$ action quantum. The idea is that the Schrödinger equation is derived from the wave propagation equation, where it should therefore be possible to recover classical mechanics in the limit where $$\hbar \rightarrow 0$$, just as it is possible to recover geometrical optics when $$\lambda \rightarrow 0$$ in the theory of wave optics. Using this expression and the polarisation relation between the amplitudes of the large-scale horizontal wind $$\hat{u}$$ and the vertical wind $$\hat{\omega}$$ (not shown here), it is possible to define the Eliassen-Palm flux of the wave packet sent into the atmosphere:

\begin{equation} \overrightarrow{F^{z}}(k, l, \omega) = \Re \{ \rho_{r}\overrightarrow{\hat{u}\hat{\omega}^{*}} \} = \rho_{r}\frac{\overrightarrow{k}}{\lvert \overrightarrow{k} \rvert^{2}}m(z) \lvert \lvert \hat{\omega}(z) \rvert \rvert^{2} \label{eq:GWD_EPflux} \end{equation} with $$k$$, $$l$$ the horizontal wavenumbers and $$w$$ the frequency of the vertical velocity field. This is included in the vertical wavenumber $$m = \frac{N \lvert \overrightarrow{k} \rvert}{\Omega} $$, according to the non-rotating WKB approximation, in the limit $$H \rightarrow \infty$$, with $$\Omega = v - \overrightarrow{k}\overrightarrow{u}$$ and $$N$$ the Brünt-Väisälä frequency. In equation \ref{eq:GWD_EPflux}, $$\rho_{r}$$ is the density of the fluid at the reference pressure level $$P_r$$.


In this scheme, $$\hat{\omega}_{n}$$ and the Eliassen Palm flow are randomly imposed at a given launch altitude $$z_0$$. A constant vertical viscosity $$\mu$$ (equation 4 in Lott et al. 2012) controls the vertical distribution of gravity wave drag near the top of the model. To move from one vertical level to the one just above, the Eliassen Palm flux is essentially conserved, but may undergo a small diffusivity, $$\nu = \mu/\rho_0$$, which can be included by replacing $$\Omega$$ by $$\Omega + i\nu m^{2}$$. This small diffusivity guarantees that the waves are finally dissipated on the last few levels of the model, if they have not been dissipated before (hence the division by the density $$\rho_0$$). Moreover, this new amplitude of the Eliassen Palm flux is limited to that produced by a saturated monochromatic $$\hat{\omega}_{s}$$ wave following :

\begin{equation} \hat{\omega}_{s} = S_{c}\frac{\Omega^{2}}{\lvert \overrightarrow{k}\rvert N}e^{-z/2H}\frac{k^{*}}{\lvert \overrightarrow{k}\rvert} \label{eq:GWD_breaking_vertical_velocity} \end{equation}

where $$\hat{\omega}$$ = 0 when $$\Omega$$ changes sign, to deal with critical levels. In equation \ref{eq:GWD_breaking_vertical_velocity}, $$S_{c}$$ is a setting parameter and $$k^{*}$$ a characteristic horizontal wave number corresponding to the largest parameterized wave.


Finally, the $$\rho^{-1}\delta_z \overrightarrow{F}^{z}_{n‘}$$ ($$n’$$=1, M) trends produced by the drag of the M generated gravity waves are calculated through the wind trends to be applied to the horizontal zonal wind. Since the $$\omega'_n$$ speeds are independent realisations, the mean trend produced is the average of these M trends. Thus, the average trend is first redistributed over the longest time scale $$\delta t$$ by rescaling it by $$\delta t / \Delta t$$ and then, the first-order autoregressive relationship (AR-1) is used as follows:

\begin{equation} \left( \frac{\delta \overrightarrow{u}}{\delta t} \right)^{t}_{GW} = \frac{\delta t}{\Delta t}\frac{1}{M}\sum^{M}_{n' = 1}\frac{1}{\rho_{0}}\frac{\delta \overrightarrow{F}^{z}_{n'}}{\delta z} + \frac{\Delta t - \delta t}{\Delta t} \left( \frac{\delta \overrightarrow{u}}{\delta t} \right)^{t-\delta t}_{GW} \label{eq:GWD_zonal_wind_forcing} \end{equation} to highlight the formalised superposition of stochastic waves from the cumulative sum of zonal wind tendencies due to gravity waves, taking as a normalisation coefficient:


\begin{equation} C^{2}_{n} = \left( \frac{\Delta t - \delta t}{\Delta t} \right)^{q}\frac{\delta t}{M\Delta t} \label{eq:normalize_coeff} \end{equation} where $$q$$ is the nearest integer that rounds (n-1)/M (i.e. towards lower values).


The characteristics of each wave launched into the GCM are chosen at random with a prescribed probability distribution, the limits of which are the key parameters of the model. These are chosen on the basis of observational constraints (where available) and theoretical considerations.


Reference papers

Lott et al. (2012) [1] Lott and Guez (2013) [2]