Difference between revisions of "Plots With PyVista"

From Planets
Jump to: navigation, search
 
(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
We provide here a tutorial on how to make pretty visuals from GCM simulations. Do not hesitate to send us your best visuals so that we can enrich our GCM plot gallery.
 
We provide here a tutorial on how to make pretty visuals from GCM simulations. Do not hesitate to send us your best visuals so that we can enrich our GCM plot gallery.
  
 +
We first import all the required libraries:
 +
 +
* netCDF4 (https://pypi.org/project/netCDF4/) to read NetCDF files in Python.
 +
* PyVista (https://docs.pyvista.org/getting-started/installation.html)
 +
 +
ps: the diagfi.nc file as well as the Jupyter notebook are provided here: https://web.lmd.jussieu.fr/~mturbet/FILES/PyVista_GCM_plot_tutorial/
 +
 +
ps2: the diagfi.nc file was produced following the quick install & run tutorial that you can follow here: https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Quick_Install_and_Run
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
Line 6: Line 14:
 
import numpy as np
 
import numpy as np
 
from netCDF4 import Dataset
 
from netCDF4 import Dataset
# import all the required libraries (netcdf4, pyvista)
 
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
First, we get the data from the GCM and extract all fields to be plotted later.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
#FIRST WE GET THE DATA FROM THE GCM SIMULATION
 
 
 
# 4D GRID VARIABLES
 
# 4D GRID VARIABLES
nc1 = Dataset('diagfi.nc')
+
nc1 = Dataset('diagfi_benchmark_early_Mars.nc')
  
 
Time_GCM=nc1.variables['Time'][:]
 
Time_GCM=nc1.variables['Time'][:]
Line 26: Line 33:
 
# 2D VARIABLES
 
# 2D VARIABLES
 
tsurf1=nc1.variables['tsurf'][:][:][:]
 
tsurf1=nc1.variables['tsurf'][:][:][:]
OLR1=nc1.variables['OLR'][:][:][:]
 
 
h2o_ice_col1=nc1.variables['h2o_ice_col'][:][:][:]
 
h2o_ice_col1=nc1.variables['h2o_ice_col'][:][:][:]
  
Line 34: Line 40:
 
w1=nc1.variables['w'][:][:][:][:]
 
w1=nc1.variables['w'][:][:][:][:]
 
ice1=nc1.variables['h2o_ice'][:][:][:][:]
 
ice1=nc1.variables['h2o_ice'][:][:][:][:]
temp1=nc1.variables['temp'][:][:][:][:]
 
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We define coordinates to be used by PyVista.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
Line 86: Line 93:
 
yy_bounds = _cell_bounds(y_polar)
 
yy_bounds = _cell_bounds(y_polar)
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
1. We prepare the surface layer (here using surface temperature)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 1. PREPARE THE SURFACE LAYER
 
 
surface_level = [RADIUS] # surface level
 
surface_level = [RADIUS] # surface level
 
grid_scalar1 = pv.grid_from_sph_coords(xx_bounds, yy_bounds, surface_level)
 
grid_scalar1 = pv.grid_from_sph_coords(xx_bounds, yy_bounds, surface_level)
  
 +
scalar_surface = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
 
for i_time in range(0,len(Time_GCM),1):
 
for i_time in range(0,len(Time_GCM),1):
     # Scalar data for the surface
+
     for i in range(0,len(lat_GCM),1):
    scalar_surface = tsurf1[i_time,:,0:(len(lon_GCM)-1)]
+
        for j in range(0,len(lon_GCM)-1,1):
 +
            scalar_surface[i,j]=scalar_surface[i,j]+tsurf1[i_time,i,j]/len(Time_GCM)
  
 
grid_scalar1.cell_arrays["example"] = np.array(scalar_surface).swapaxes(-2, -1).ravel("C")
 
grid_scalar1.cell_arrays["example"] = np.array(scalar_surface).swapaxes(-2, -1).ravel("C")
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a first plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
Line 112: Line 124:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
[[File:tutoriel_pyvista_plot1.png|thumb| Plot 1]]
 +
 +
2. We create the 3D spherical shell (3D grid lines)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 2. CREATE THE 3D SPHERICAL SHELL (GRID LINES)
 
 
radial_shell = np.linspace(0, RADIUS*1.2, 15)
 
radial_shell = np.linspace(0, RADIUS*1.2, 15)
 
xx_shell, yy_shell, zz_shell = np.meshgrid(np.radians(np.arange(90, 365, resolution_lon_GCM)), np.radians(np.arange(-84, 84, resolution_lat_GCM)), radial_shell)
 
xx_shell, yy_shell, zz_shell = np.meshgrid(np.radians(np.arange(90, 365, resolution_lon_GCM)), np.radians(np.arange(-84, 84, resolution_lat_GCM)), radial_shell)
Line 124: Line 139:
 
grid_shell['radials'] = zz_shell.ravel(order='F')
 
grid_shell['radials'] = zz_shell.ravel(order='F')
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a second plot
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# SECOND PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 139: Line 154:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
[[File:tutoriel_pyvista_plot2.png|thumb| Plot 2]]
 +
 +
3. We prepare for the array of wind arrows.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
Line 148: Line 167:
  
 
i_alt=13 # altitude of the wind layer (in the GCM data)
 
i_alt=13 # altitude of the wind layer (in the GCM data)
 +
 +
scalar_u_wind = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
 +
scalar_v_wind = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
 +
scalar_w_wind = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
  
 
for i_time in range(0,len(Time_GCM),1):
 
for i_time in range(0,len(Time_GCM),1):
     # Scalar data for the winds
+
     for i in range(0,len(lat_GCM),1):
    scalar_u_wind = u1[i_time,i_alt,:,0:(len(lon_GCM)-1)]
+
        for j in range(0,len(lon_GCM)-1,1):
    scalar_v_wind = v1[i_time,i_alt,:,0:(len(lon_GCM)-1)]
+
            scalar_u_wind[i,j]=scalar_u_wind[i,j]+u1[i_time,i_alt,i,j]/len(Time_GCM)
    scalar_w_wind = w1[i_time,i_alt,:,0:(len(lon_GCM)-1)]
+
            scalar_v_wind[i,j]=scalar_v_wind[i,j]+v1[i_time,i_alt,i,j]/len(Time_GCM)
 +
            scalar_w_wind[i,j]=scalar_w_wind[i,j]+w1[i_time,i_alt,i,j]/len(Time_GCM)
  
 
inv_axes = [*range(scalar_u_wind[::freq_call_wind,::freq_call_wind].ndim)[::-1]]
 
inv_axes = [*range(scalar_u_wind[::freq_call_wind,::freq_call_wind].ndim)[::-1]]
Line 178: Line 202:
 
grid_winds.point_arrays["example"] = vectors
 
grid_winds.point_arrays["example"] = vectors
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a third plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# THIRD PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 194: Line 218:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
[[File:tutoriel_pyvista_plot3.png|thumb| Plot 3]]
 +
 +
4.1 We create a cloud layer (first option using 2D cloud layer)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 4. CREATE THE CLOUD LAYERS (LEVEL 1)
 
 
 
# Number of vertical levels
 
# Number of vertical levels
 
nlev = 3
 
nlev = 3
Line 207: Line 233:
 
table_level[2]=0.
 
table_level[2]=0.
  
 +
 +
scalar_cloud = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
 
for i_time in range(0,len(Time_GCM),1):
 
for i_time in range(0,len(Time_GCM),1):
     # Scalar data for the clouds
+
     for i in range(0,len(lat_GCM),1):
    scalar_cloud = h2o_ice_col1[i_time,:,0:(len(lon_GCM)-1)]
+
        for j in range(0,len(lon_GCM)-1,1):
 +
            scalar_cloud[i,j]=scalar_cloud[i,j]+h2o_ice_col1[i_time,i,j]/len(Time_GCM)
  
 
# 3D cloud layer
 
# 3D cloud layer
Line 229: Line 258:
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.00005])
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.00005])
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a fourth plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# FOURTH PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 246: Line 275:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
[[File:tutoriel_pyvista_plot4.png|thumb| Plot 4]]
 +
 +
4.2 We create a cloud layer (second, more advanced option using 3D cloud layer)
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# 5. CREATE THE CLOUD LAYERS (LEVEL 2)
 
 
 
# Get the 3D field of water ice clouds
 
# Get the 3D field of water ice clouds
 
scalar_ice = np.zeros((len(lat_GCM),len(lon_GCM)-1,len(alt_GCM)),dtype='f')
 
scalar_ice = np.zeros((len(lat_GCM),len(lon_GCM)-1,len(alt_GCM)),dtype='f')
Line 256: Line 287:
 
         for j in range(0,len(lon_GCM)-1,1):
 
         for j in range(0,len(lon_GCM)-1,1):
 
             for k in range(0,len(alt_GCM),1):
 
             for k in range(0,len(alt_GCM),1):
                 scalar_ice[i,j,k]=ice1[i_time,k,i,j]
+
                 scalar_ice[i,j,k]=scalar_ice[i,j,k]+ice1[i_time,k,i,j]/len(Time_GCM)
 
              
 
              
 
nlev = len(alt_GCM)+1
 
nlev = len(alt_GCM)+1
Line 277: Line 308:
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.9e-8])
 
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.9e-8])
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a fifth plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
# FOURTH PLOT
 
   
 
 
p = pv.Plotter(1)
 
p = pv.Plotter(1)
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
Line 294: Line 325:
 
p.show()
 
p.show()
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
[[File:tutoriel_pyvista_plot5.png|thumb| Plot 5]]
 +
 +
We make a first series of .png files (rotating the azimuth angle) to be used to build a .gif animated plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
#FINALLY WE MAKE THE GIF
 
 
 
total_step_gif=100
 
total_step_gif=100
 
for i in range(0,total_step_gif,1):
 
for i in range(0,total_step_gif,1):
Line 320: Line 353:
 
     print("we are at step = ", i, "/",total_step_gif)
 
     print("we are at step = ", i, "/",total_step_gif)
  
print('OPERATION FINISHED')
+
print('FINISHED')
 +
</syntaxhighlight>
 +
 
 +
To build a gif, you can use the imagemagick convert tool (https://imagemagick.org/script/download.php) using for instance the following command line:
 +
 
 +
<syntaxhighlight lang="bash">
 +
convert -delay 10 gif_planet_*.png animated_planet.gif
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
We make a second series of .png files (rotating not only the azimuth angle, but also the elevation of the camera) to be used to build a .gif animated plot.
  
 
<syntaxhighlight lang="python">
 
<syntaxhighlight lang="python">
#GIF WITH VARIATION OF CAMERA ELEVATION
 
 
 
total_step_gif=100
 
total_step_gif=100
 
for i in range(0,total_step_gif,1):
 
for i in range(0,total_step_gif,1):
Line 348: Line 387:
 
     print("we are at step = ", i, "/",total_step_gif)
 
     print("we are at step = ", i, "/",total_step_gif)
  
print('OPERATION FINISHED')
+
print('FINISHED')
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
 +
Another method allows us to directly generate the gif, without generating all the pictures.
 +
 +
<syntaxhighlight lang="python">
 +
#FINALLY WE MAKE THE GIF
 +
total_step_gif=100
 +
p = pv.Plotter(notebook=False, off_screen=True)
 +
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
 +
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
 +
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
 +
p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
 +
p.camera_position = 'yz'
 +
# Open a gif
 +
p.open_gif("nom_du_gif.gif")
 +
for i in range(0,total_step_gif,1):
 +
    p.camera_position = 'yz'
 +
    p.camera.azimuth = i*360/total_step_gif
 +
    p.camera.roll += 0.
 +
    p.camera.elevation = 30
 +
    p.set_background('white')
 +
    # Write a frame. This triggers a render.
 +
    p.write_frame()
 +
# Closes and finalizes movie
 +
p.close()
 +
</syntaxhighlight>
 +
 +
 +
Last words: Do not hesitate to send us your best visuals so that we can enrich our GCM plot gallery! Do not hesitate as well to update this page with additional features of PyVista :)
 +
 +
[[Category:Generic-Model]]

Latest revision as of 10:42, 24 March 2023

We provide here a tutorial on how to make pretty visuals from GCM simulations. Do not hesitate to send us your best visuals so that we can enrich our GCM plot gallery.

We first import all the required libraries:

ps: the diagfi.nc file as well as the Jupyter notebook are provided here: https://web.lmd.jussieu.fr/~mturbet/FILES/PyVista_GCM_plot_tutorial/

ps2: the diagfi.nc file was produced following the quick install & run tutorial that you can follow here: https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Quick_Install_and_Run

import pyvista as pv
import numpy as np
from netCDF4 import Dataset

First, we get the data from the GCM and extract all fields to be plotted later.

# 4D GRID VARIABLES
nc1 = Dataset('diagfi_benchmark_early_Mars.nc')

Time_GCM=nc1.variables['Time'][:]
lat_GCM=nc1.variables['latitude'][:]
lon_GCM=nc1.variables['longitude'][:]
alt_GCM=nc1.variables['altitude'][:]
aire_GCM=nc1.variables['aire'][:][:]

resolution_lon_GCM = abs(lon_GCM[1]-lon_GCM[0])
resolution_lat_GCM = abs(lat_GCM[1]-lat_GCM[0])

# 2D VARIABLES
tsurf1=nc1.variables['tsurf'][:][:][:]
h2o_ice_col1=nc1.variables['h2o_ice_col'][:][:][:]

# 3D VARIABLES
u1=nc1.variables['u'][:][:][:][:]
v1=nc1.variables['v'][:][:][:][:]
w1=nc1.variables['w'][:][:][:][:]
ice1=nc1.variables['h2o_ice'][:][:][:][:]

We define coordinates to be used by PyVista.

# DEFINE REFERENCE RADIUS OF THE PLANET
RADIUS = 1.0

# Longitudes and latitudes used to plot the GCM simulation
x = lon_GCM[0:len(lon_GCM)-1]+180.
y = lat_GCM[0:len(lat_GCM)]

# Define polar coordinates
y_polar = 90.0 - y  # grid_from_sph_coords() expects polar angle


# FUNCTION TO CALCULATE COORDINATE CELL BOUNDARIES
def _cell_bounds(points, bound_position=0.5):
    """
    Calculate coordinate cell boundaries.

    Parameters
    ----------
    points: numpy.array
        One-dimensional array of uniformly spaced values of shape (M,)
    bound_position: bool, optional
        The desired position of the bounds relative to the position
        of the points.

    Returns
    -------
    bounds: numpy.array
        Array of shape (M+1,)

    Examples
    --------
    >>> a = np.arange(-1, 2.5, 0.5)
    >>> a
    array([-1. , -0.5,  0. ,  0.5,  1. ,  1.5,  2. ])
    >>> cell_bounds(a)
    array([-1.25, -0.75, -0.25,  0.25,  0.75,  1.25,  1.75,  2.25])
    """
    assert points.ndim == 1, "Only 1D points are allowed"
    diffs = np.diff(points)
    delta = diffs[0] * bound_position
    bounds = np.concatenate([[points[0] - delta], points + delta])
    return bounds


# Create arrays of grid cell boundaries, which have shape of (x.shape[0] + 1)
xx_bounds = _cell_bounds(x)
yy_bounds = _cell_bounds(y_polar)

1. We prepare the surface layer (here using surface temperature)

surface_level = [RADIUS] # surface level
grid_scalar1 = pv.grid_from_sph_coords(xx_bounds, yy_bounds, surface_level)

scalar_surface = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
for i_time in range(0,len(Time_GCM),1):
    for i in range(0,len(lat_GCM),1):
        for j in range(0,len(lon_GCM)-1,1):
            scalar_surface[i,j]=scalar_surface[i,j]+tsurf1[i_time,i,j]/len(Time_GCM)

grid_scalar1.cell_arrays["example"] = np.array(scalar_surface).swapaxes(-2, -1).ravel("C")

We make a first plot.

# FIRST PLOT
    
p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.camera_position = 'yz'
p.camera.azimuth = 130.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_only.png",window_size=[1000,1000])#, transparent_background=True)
p.show()
Plot 1

2. We create the 3D spherical shell (3D grid lines)

radial_shell = np.linspace(0, RADIUS*1.2, 15)
xx_shell, yy_shell, zz_shell = np.meshgrid(np.radians(np.arange(90, 365, resolution_lon_GCM)), np.radians(np.arange(-84, 84, resolution_lat_GCM)), radial_shell)
# Transform to spherical coordinates
x_shell = zz_shell * np.cos(yy_shell) * np.cos(xx_shell)
y_shell = zz_shell * np.cos(yy_shell) * np.sin(xx_shell)
z_shell = zz_shell * np.sin(yy_shell)
grid_shell = pv.StructuredGrid(x_shell, y_shell, z_shell)
grid_shell['radials'] = zz_shell.ravel(order='F')

We make a second plot

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid.png",window_size=[1000,1000])#, transparent_background=True)
p.show()
Plot 2

3. We prepare for the array of wind arrows.

# 3. PREPARE THE WIND LAYER

freq_call_wind=2 # used to change the frequency of wind pattern
MULT_FACTOR_ZWIND=100. # scaling factor of vertical wind so that we can see it in the plot
wind_level = [RADIUS * 1.02] # altitude of the wind layer (on the plot)

i_alt=13 # altitude of the wind layer (in the GCM data)

scalar_u_wind = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
scalar_v_wind = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
scalar_w_wind = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')

for i_time in range(0,len(Time_GCM),1):
    for i in range(0,len(lat_GCM),1):
        for j in range(0,len(lon_GCM)-1,1):
            scalar_u_wind[i,j]=scalar_u_wind[i,j]+u1[i_time,i_alt,i,j]/len(Time_GCM)
            scalar_v_wind[i,j]=scalar_v_wind[i,j]+v1[i_time,i_alt,i,j]/len(Time_GCM)
            scalar_w_wind[i,j]=scalar_w_wind[i,j]+w1[i_time,i_alt,i,j]/len(Time_GCM)

inv_axes = [*range(scalar_u_wind[::freq_call_wind,::freq_call_wind].ndim)[::-1]]
# Transform vectors to cartesian coordinates
vectors = np.stack(
        [
            i.transpose(inv_axes).swapaxes(-2, -1).ravel("C")
            for i in pv.transform_vectors_sph_to_cart(
                x[::freq_call_wind],
                y_polar[::freq_call_wind],
                wind_level[::freq_call_wind],
                scalar_u_wind[::freq_call_wind,::freq_call_wind].transpose(inv_axes),
                -scalar_v_wind[::freq_call_wind,::freq_call_wind].transpose(inv_axes),  # Minus sign because y-vector in polar coords is required
                -MULT_FACTOR_ZWIND*scalar_w_wind[::freq_call_wind,::freq_call_wind].transpose(inv_axes),
            )
        ],
        axis=1,
    )
# Scale vectors to make them visible
vectors *= RADIUS * 0.01
# Create a grid for the vectors
grid_winds = pv.grid_from_sph_coords(x[::freq_call_wind], y_polar[::freq_call_wind], wind_level)
# Add vectors to the grid
grid_winds.point_arrays["example"] = vectors

We make a third plot.

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid_with_winds.png",window_size=[1000,1000])#, transparent_background=True)
p.show()
Plot 3

4.1 We create a cloud layer (first option using 2D cloud layer)

# Number of vertical levels
nlev = 3
table_level=np.arange(nlev)

# artificial empty layers above and below the clouds
table_level[0]=0.
table_level[1]=1.
table_level[2]=0.


scalar_cloud = np.zeros((len(lat_GCM),len(lon_GCM)-1),dtype='f')
for i_time in range(0,len(Time_GCM),1):
    for i in range(0,len(lat_GCM),1):
        for j in range(0,len(lon_GCM)-1,1):
            scalar_cloud[i,j]=scalar_cloud[i,j]+h2o_ice_col1[i_time,i,j]/len(Time_GCM)

# 3D cloud layer
scalar_cloud_3d = (
scalar_cloud.repeat(nlev).reshape((*scalar_cloud.shape, nlev)) * table_level[np.newaxis, np.newaxis, :]).transpose(2, 0, 1)

# geometry of the grid
z_scale = RADIUS/20.
levels2 = z_scale * (np.arange(scalar_cloud_3d.shape[0] + 1)) + RADIUS*1.01
print (levels2)

# Create a structured grid by transforming coordinates
grid_scalar_cloud_3d = pv.grid_from_sph_coords(xx_bounds, yy_bounds, levels2)

# Add data to the grid
grid_scalar_cloud_3d.cell_arrays["example"] = np.array(scalar_cloud_3d).swapaxes(-2, -1).ravel("C")

# Create a set of isosurfaces
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.00005])

We make a fourth plot.

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid_with_winds_with_2D_clouds.png",window_size=[1000,1000])#, transparent_background=True)
p.show()
Plot 4

4.2 We create a cloud layer (second, more advanced option using 3D cloud layer)

# Get the 3D field of water ice clouds
scalar_ice = np.zeros((len(lat_GCM),len(lon_GCM)-1,len(alt_GCM)),dtype='f')
for i_time in range(0,len(Time_GCM),1):
    for i in range(0,len(lat_GCM),1):
        for j in range(0,len(lon_GCM)-1,1):
            for k in range(0,len(alt_GCM),1):
                scalar_ice[i,j,k]=scalar_ice[i,j,k]+ice1[i_time,k,i,j]/len(Time_GCM)
            
nlev = len(alt_GCM)+1
table_level=np.arange(nlev)

# geometry of the grid
z_scale = RADIUS/50.
levels2 = RADIUS*1.01+ z_scale * table_level

# 3D cloud layer
scalar_cloud_3d = (np.clip(scalar_ice,0,1.0e8)).transpose(2, 0, 1) # clip to a=amax

# Create a structured grid by transforming coordinates
grid_scalar_cloud_3d = pv.grid_from_sph_coords(xx_bounds, yy_bounds, levels2)

# Add data to the grid
grid_scalar_cloud_3d.cell_arrays["example"] = np.array(scalar_cloud_3d).swapaxes(-2, -1).ravel("C")

# Create a set of isosurfaces
surfaces_cloud = grid_scalar_cloud_3d.cell_data_to_point_data().contour(isosurfaces=[0.9e-8])

We make a fifth plot.

p = pv.Plotter(1)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
p.camera_position = 'yz'
p.camera.azimuth = 30.
p.camera.roll =270
p.camera.elevation = 30
p.set_background('white')
p.screenshot("surface_temperature_with_grid_with_winds_with_3D_clouds.png",window_size=[1000,1000])#, transparent_background=True)
p.show()
Plot 5

We make a first series of .png files (rotating the azimuth angle) to be used to build a .gif animated plot.

total_step_gif=100
for i in range(0,total_step_gif,1):
    p = pv.Plotter(i)
    p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
    p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
    p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
    p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
    p.camera_position = 'yz'
    p.camera.azimuth = i*360/total_step_gif
    p.camera.roll += 0.
    p.camera.elevation = 30
    p.set_background('white')
    if(i<10):
        p.screenshot("gif_planet_000"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=10) and (i_time<100)):
        p.screenshot("gif_planet_00"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=100) and (i_time<1000)):
        p.screenshot("gif_planet_0"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=1000) and (i_time<10000)):
        p.screenshot("gif_planet_"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    print("we are at step = ", i, "/",total_step_gif)

print('FINISHED')

To build a gif, you can use the imagemagick convert tool (https://imagemagick.org/script/download.php) using for instance the following command line:

convert -delay 10 gif_planet_*.png animated_planet.gif

We make a second series of .png files (rotating not only the azimuth angle, but also the elevation of the camera) to be used to build a .gif animated plot.

total_step_gif=100
for i in range(0,total_step_gif,1):
    p = pv.Plotter(i)
    p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
    p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
    p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
    p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
    p.camera_position = 'yz'
    p.camera.azimuth = i*360/total_step_gif
    p.camera.roll += 0.
    p.camera.elevation = 45+15*np.cos((i*360/total_step_gif)*np.pi/180.)
    p.set_background('white')
    if(i<10):
        p.screenshot("gif_planet_000"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=10) and (i_time<100)):
        p.screenshot("gif_planet_00"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=100) and (i_time<1000)):
        p.screenshot("gif_planet_0"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    if((i>=1000) and (i_time<10000)):
        p.screenshot("gif_planet_"+str(i)+".png",window_size=[1000,1000])#, transparent_background=True)
    print("we are at step = ", i, "/",total_step_gif)

print('FINISHED')

Another method allows us to directly generate the gif, without generating all the pictures.

#FINALLY WE MAKE THE GIF
total_step_gif=100
p = pv.Plotter(notebook=False, off_screen=True)
p.add_mesh(grid_scalar1, opacity=1.0, cmap="Reds", smooth_shading="True",show_scalar_bar=False) #clim=[1,1],
p.add_mesh(grid_shell, style='wireframe',cmap='Greys',opacity=0.1,show_scalar_bar=False)
p.add_mesh(grid_winds.glyph(orient="example", scale="example", tolerance=0.005),cmap="binary",show_scalar_bar=False)
p.add_mesh(surfaces_cloud,cmap="Greys",opacity=0.7,show_scalar_bar=False)
p.camera_position = 'yz'
# Open a gif
p.open_gif("nom_du_gif.gif")
for i in range(0,total_step_gif,1):
    p.camera_position = 'yz'
    p.camera.azimuth = i*360/total_step_gif
    p.camera.roll += 0.
    p.camera.elevation = 30
    p.set_background('white')
    # Write a frame. This triggers a render.
    p.write_frame()
# Closes and finalizes movie
p.close()


Last words: Do not hesitate to send us your best visuals so that we can enrich our GCM plot gallery! Do not hesitate as well to update this page with additional features of PyVista :)